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Abstract – We consider the branched Josephson junction created by planar superconductors
connected to each other through the Y-junction insulator. Assuming that the structure interacts
with the external constant magnetic field, we study static sine-Gordon solitons in such system by
modeling them in terms of the stationary sine-Gordon equation on metric graph. Exact analytical
solutions of the problem are obtained and their stability is analyzed.

Copyright c© EPLA, 2020

Introduction. – Low-dimensional nanoscale materi-
als are the basic structures for many electronic devices.
Optimization of their electronic properties and effective
functioning of such devices require tuning the material
properties and revealing the most appropriate device ar-
chitecture. This concerns also superconducting structures
such as Josephson junctions. A remarkable feature of
Josephson junctions is the fact that the phase difference at
the junction is described in terms of the sine-Gordon equa-
tion (see, e.g., [1–8]). This makes them powerful testing
ground for experimental realization of sine-Gordon soli-
tons [9–15]. So far, different models have been proposed
for the study of static and traveling solitons using Joseph-
son junctions [16–33].

In this paper we address the problem of static solitons
in branched Josephson junction containing planar super-
conductors connected to each other via the branched in-
sulators having the shape of a Y-junction. The system
is considered as interacting with constant external mag-
netic field. The phase differences on each branch of such
structure is described in terms of the stationary sine-
Gordon equation on metric graphs. Earlier, in ref. [34]
we considered a version of such system for the case of ab-
sence of current-carrying states. Unlike that case, in the
present study, including current leads to completely dif-
ferent vertex boundary conditions, and hence, to different
solutions than those obtained in [34]. Provided certain

constraints given in terms of the system parameters, we
obtain exact analytical solutions of the stationary sine-
Gordon equation on metric graphs, modeling static soli-
tons in the branched Josephson junction. The motivation
for the study of such model comes from several practically
important problems, such as superconducting quantum in-
terference devices (SQUID in networks), superconducting
qubits in networks, as well as granular superconductors.
Among others, the most attractive practical application
could be experimental realization of sine-Gordon solitons
in networks. We note that the soliton dynamics in net-
works is becoming one of the hot topics in nonlinear and
mathematical physics [26,27,34–53]. References [26,27]
considered for the first time the sine-Gordon equation on
branched domain modeling of the Josephson junction at
tricrystal surfaces. The integrable sine-Gordon equation
on metric graphs is studied in [34,40,45]. Linear and non-
linear systems of PDE on metric graphs are considered
in [48–50].

Among different realizations of Josephson junctions that
having the discrete and branched structure is of special im-
portance, as it allows to study soliton dynamics in discrete
systems and networks. The early treatment of supercon-
ductor networks consisting of Josephson junctions meeting
at one point dates back to [24]. An interesting realization
of the Josephson junction networks at tricrystal bound-
aries was discussed earlier in [25], which inspired later
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Fig. 1: (a) Branched Josephson Y-junction in a constant mag-
netic field, H . Red lines imply normal metal or insulator.
J1, J2 and J3 are the Josephson currents flowing through each
branch of the junction. (b) Basic star graph. Lj is the length
of the j-th branch of the graph (j = 1, 2, 3).

detailed study of the problem using the sine-Gordon equa-
tion on networks in [26,27]. Some versions of Josephson
junction networks containing chain of the linear supercon-
ductors connected via the point-like insulators have been
studied on the basis of discrete sine-Gordon model [28–33].
Unlike the previously discussed versions of Josephson junc-
tion networks, our model is simple from the viewpoint of
experimental realization and can be studied.

The paper is organized as follows. In the next section
we give a formulation of the problem in terms of the sine-
Gordon equation on metric graphs. The third section
presents the derivation of exact analytical solutions for
special cases and their stability analysis. Finally, the final
section presents some concluding remarks.

Modeling of branched Josephson junction in

terms of metric graph. – Consider the structure pre-
sented in fig. 1(a), which represents a Josephson junc-
tion consisting of three planar superconductors connected
to each other via the branched insulator in the form of
Y-junction. The whole system is assumed to interact with
external constant magnetic field, H , which is perpendic-
ular to the plane of superconductors. Such structure can
be considered as the branched version of the Josephson
junction considered in refs. [20,21]. The structure can
be modeled in terms of metric star graph having three
branches, i.e., simple Y-junction (see, fig. 1(b)). For each
bond of the star graph a coordinate xj is assigned. The
origin of coordinates at the vertex, 0 and for bonds we
put xj ∈ [0; Lj]. Then one can use shorthand notation
φj(x) for φj(xj), where x is the coordinate on the bond

j to which the component φj refers. The phase difference
on each branch φj , is described in terms of the stationary
sine-Gordon equation on metric star graph [34]:

d2

dx2
φj =

1

λ2
j

sin(φj), 0 < x < Lj, (1)

where j = 1, 2, 3 is the bond (branch) number and the
origin of coordinates is assumed at the branching point,
O. To solve this equation, one needs to impose boundary
conditions at the branching point, O. Such boundary con-
ditions can be derived from the physical properties of the
structure presented in fig. 1(a). Computing, at the branch-
ing point, the phase differences, φ1 = θ1−θ3, φ2 = θ1−θ2,
φ3 = θ2 − θ3, where θ1,2,3 are the phases on each super-
conductor, one can obtain first set of the vertex boundary
conditions given by

φ1|x=0 − φ2|x=0 − φ3|x=0 = 0. (2)

In the following we will use the system of units h̄ = c =
2πd = e = 1, where d is equal to twice the penetration
depth (for identical superconductors) plus the insulator
(or normal metal) thickness [54]. In such units, e.g., for
d = 1 mm Jj = 1 is equal to ≈ 7.64 nA, and for the mag-
netic field H = 1 implies that H ≈ 1.22 µA/m, etc.

Then the local magnetic field in terms of φj can be
written as

hj(x) =
∂φj

∂x
, (3)

where we have scaled the local magnetic field over π (i.e.,
hj(x)

π
→ hj(x)). The current density on each branch of

the junction is given as [21,54,55]

jj(x) =
1

4λ2
j

sinφj(x). (4)

Integrating eq. (4) over the each bond and using eq. (1)
we can find the current on each bond as [54]

Jj =
1

4

(

dφj

dx

∣

∣

∣

∣

x=Lj

−
dφj

dx

∣

∣

∣

∣

x=0

)

. (5)

Using continuity of the local magnetic field hj(x) at the
branching point (h1(0) = h2(0) = h3(0)) we get the second
set of vertex boundary conditions:

dφ1

dx

∣

∣

∣

∣

x=0

=
dφ2

dx

∣

∣

∣

∣

x=0

=
dφ3

dx

∣

∣

∣

∣

x=0

. (6)

For complete formulation of the problem, one needs also
to impose boundary conditions at the end of each branch.
This can be done by writing explicitly the value of lo-
cal magnetic field in terms of external and intrinsic mag-
netic field. These latter are supposed to be induced by
Josephson current on each branch. Denoting this mag-
netic field on each branch by HJj (j = 1, 2, 3) we have the
following Neumann-type boundary conditions at the end
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of each branch:

dφ1

dx

∣

∣

∣

∣

x=L1

= H + HJ1,

dφ2

dx

∣

∣

∣

∣

x=L2

= H − HJ2,

dφ3

dx

∣

∣

∣

∣

x=L3

= H − HJ3. (7)

Writing the same expression at the branching point,
one can derive explicit relation expressing the external
magnetic field, H in terms of the derivatives of phase
differences:

H =
1

4

3
∑

j=1

dφj

dx

∣

∣

∣

∣

x=Lj

+
1

4

dφ1

dx

∣

∣

∣

∣

x=0

. (8)

The problem given by eqs. (1), (2), (6) and (7) com-
pletely determines the problem of sine-Gordon equation
on metric star graph, which is the model for the static
solitons in the branched Josephson junction presented in
fig. 1(a).

Exact solutions of eq. (1) for the boundary conditions
providing the absence of current-carrying states (Jj = 0),
have been obtained in [34], where the stability of such solu-
tions also was analyzed. Here we consider current-carrying
states (Jj �= 0) in the branched Josephson junction, which
are described by different boundary conditions.

Static solitons and their stability. – The problem
given by eqs. (1), (2), (6) and (7) have different types
of solutions. However, only the stable solutions of this
problem can be considered as the physical ones. These
latter describe the phase difference in branched Josephson
junction in fig. 1(a). Therefore, following refs. [20,21], we
provide prescription for stability analysis for the solutions
of eq. (1). Starting point for such analysis is the Gibbs
free-energy functional which can be written as [20,21]

ΩG =
∑3

j=1
Ω

(j)
G

[

φj ,
dφj

dx
; H, HJ1, HJ2, HJ3

]

, (9)

where Ω
(j)
G is the Gibbs free energy functional on each

bond (see ref. [23] for details of the derivation of ΩG),
which is given by

Ω
(j)
G

[

φj ,
dφj

dx
; H, HJ1, HJ2, HJ3

]

= 2H2Lj

− (H ± HJj)φj(Lj)

+ (H − HJ1 + HJ2 + HJ3)φj(0)

+

Lj
∫

0

[

1

λ2
j

(1 − cosφj(x)) +
1

2

(

dφj(x)

dx

)2
]

dx, (10)

where we take the “+” sign for j = 1, and “−” sign for
other cases. Equation (1) together with the boundary con-
ditions (2), (6), (7) follows from the condition

δΩG = 0. (11)

Fig. 2: Upper panel: The dependence of the stability border,
kc = kc(L) on the branch length (solid line) for the branched
Josephson junction. The colored area corresponds to the stabil-
ity area. Lower panel: similar plot in the linear (unbranched)
case from ref. [21].

Fig. 3: The stability region (colored) of φ in the parametric
plane. Branch lengthes are L1 = 1, L2 = 2, L3 = 3.

The criterion for the stability of the solution of the
problem given by eqs. (1), (2), (6) and (7), can be ob-
tained from the second variation of ΩG, which leads to
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Fig. 4: The dependence Jc = Jc(L) for H = 0 (solid line).
The stability region is colored, parameters are the same as in
fig. 2.

the following Sturm-Liouville problem [20,21,34]:

−
d2ψj

dx2
+

1

λ2
j

cosφj(x)ψj = µψj , 0 < x < Lj ,

ψ1|x=0 − ψ2|x=0 − ψ3|x=0 = 0,

dψ1

dx

∣

∣

∣

∣

x=0

=
dψ2

dx

∣

∣

∣

∣

x=0

=
dψ3

dx

∣

∣

∣

∣

x=0

,

dψj

dx

∣

∣

∣

∣

x=Lj

= 0, j = 1, 2, 3, (12)

where ψj = δφj , j = 1, 2, 3. In terms of the lowest eigen-
value, µ0, the criterion for stability of the solution can be

branch 1

-0.5 0 0.5

H

0

0.1

0.2

J
1

branch 2

-0.5 0 0.5

H

-0.4

-0.2

0

0.2

J
2

branch 3

-0.5 0 0.5

H

-0.6

-0.4

-0.2

0

0.2

J
3

Fig. 5: The stability region (colored) of φj in the physical plane
(J, H) for type I solutions and the same parameters as in fig. 3.

formulated as follows. If µ0 < 0, the solution φj(x) cor-
responds to a saddle point of eq. (9) which implies that
the solution is absolutely unstable and unphysical. Stable
(physical) solutions correspond to the case, when µ0 > 0,
(δ2ΩG > 0). The boundaries of the stability regions for
these solutions is determined by the condition µ0 = 0
(δ2ΩG = 0), that leads to the following Sturm-Liouville
problem:

−
d2ψ̄j

dx2
+

1

λ2
j

cosφj(x)ψ̄j = 0, 0 < x < Lj , (13)

ψ̄1|x=0 − ψ̄2|x=0 − ψ̄3|x=0 = 0, (14)

dψ̄1

dx

∣

∣

∣

∣

x=0

=
dψ̄2

dx

∣

∣

∣

∣

x=0

=
dψ̄3

dx

∣

∣

∣

∣

x=0

, (15)

dψ̄j

dx

∣

∣

∣

∣

x=Lj

= 0, j = 1, 2, 3. (16)

Using eqs. (13)–(16), one can explicitly find the stability
boundary for each type of solution of the problem given
by eqs. (1), (2), (6) and (7).
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Fig. 6: The stability region (colored) of φj in the physical plane
(J, H) for type II solutions and the same parameters as in fig. 3.

The general solution of eq. (1) can be obtained from the
following first integral [20,21]:

1

2

[

dφj

dx

]2

+ cosφj = Cj , −1 ≤ Cj < ∞, (17)

with Cj being the integration constant. Depending on
the value of Cj this general solution can be determined as
type I and II. Namely, for Cj ∈ [−1, 1) we have solution
of type I, while solution of type II corresponds to the val-
ues, Cj ∈ [1, ∞). Both solutions for H �= 0, and Jj = 0
have been found in [47] where it was shown that only the
special case of the solution of type II is stable. following
refs. [20,21], instead of Cj we introduce new parametriza-
tion constant, kj , which is defined, for the solution of
type I as

k2
j ≡

1 + Cj

2
, −1 < kj < 1

and

k2
j ≡

2

1 + Cj

, −1 < kj < 1,

for the solution of type II. The general (type I) solution
of eq. (1) can be written as [20,21,34]

φj(x)=(2nj + 1)π+2 arcsin

{

kjsn

[

x − x0j

λj

, kj

]}

(18)

where sn is the Jacobi elliptic function [56], and x0j are
integration constants which obey the constraints given by
the following inequality:

−λjK(kj) < x0j < λjK(kj), j = 1, 2, 3.

The solution given by eq. (18) fulfils the vertex bound-
ary conditions given by eqs. (2), (6) and (7), i.e., it be-
comes the exact analytical solution of the problem given
by eqs. (1), (2), (6) and (7), provided the following con-
straints hold true:

λ1 = λ2 = λ3 = λ, k1 = k2 = k3 = k,

−
x01

λ1
=

x02

λ2
=

x03

λ3
= x0. (19)

n1 = n2 + n3. (20)

Solution (18) can be stable only for those values of k which
belong to the interval [kc, 1) (kcsn[x0, kc] = 1

2 ). There-
fore in the following, in analogy with that in ref. [21],
we compute the physical characteristics of the system at
k = kc(x0) which correspond to its values at the stability
border. Using the relation

dφj(x)

dx
= −

2k

λ
cn

[x

λ
± x0, k

]

, (21)

and eq. (7), when j = 1 we take + sign, when j = 2, 3 we
take − sign, the stability border for the current-carrying
states can be written as

J
(c)
j = −

kc

2λ

(

cn

[

Lj

λ
± x0, kc

]

− cn [x0, kc]

)

, (22)

H(c) = −
kc

2λ

⎛

⎝

3
∑

j=1

cn

[

Lj

λ
± x0, kc

]

+ cn [x0, kc]

⎞

⎠. (23)

Figure 2 presents plot of kc as a function of the param-
eter, L determined from L1 = L, L2 = 2L, L3 = 3L. The
left (colored) area of each plot corresponds to the stability
region. Lower panel in this figure presents corresponding
plot for linear case from ref. [21]. Since kc appears as the
value of k at which the Sturm-Liouville (stability) prob-
lem has zero (µ0 = 0) eigenvalue, it is important to check
at which values of x0 this is possible. Figure 3 presents
plot of kc as a function of x0, i.e., the stability region of
φ in the parametric plane. The colored area corresponds
to the stability region.

The solution of type II can be treated similarly to that
of type I, by considering two cases. The case H > 0,
Jj = 0 has been studied in detail in ref. [34]. Therefore
we drop this part. Here we will focus on the case H > 0,
Jj > 0. The general (type II) solution for this case can be
written as

φj(x) = π(2nj + 1) + 2am

(

x − x0j

λjkj

, kj

)

. (24)

Fulfilling the boundary conditions given by eqs. (2) and (6)
leads to the constraints in eqs. (19) and (20). Stable
solutions and the border between stability and unstable
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Fig. 7: The stability region of φj in the physical plane (J, H)
for the linear (unbranched) Josephson junction from ref. [21].

regions can be determined similarly to that for solution
type I.

From eqs. (5) and (8) we get the expressions for current
and magnetic field:

Jj =
1

2λk

(

dn

[

Lj

λk
± x0, k

]

− dn [x0, k]

)

, (25)

H =
1

2λk

⎛

⎝

3
∑

j=1

dn

[

Lj

λk
± x0, k

]

+ dn [x0, k]

⎞

⎠, (26)

x0 ∈ [0; x0,c]. (27)

In fig. 4, the dependence of the current on the branch
length, Lj is plotted. Colored (lower) parts corresponds
to the the stability area. Figures 5 and 6 present the plots
of the current, Jj as a function of the magnetic field for
type I and type II, respectively. The colored area in each
plot corresponds to the stability region, i.e., presents the
stability region of φj in the physical plane (J, H).

It is meaningful to compare the above results with those
for their linear (unbranched) counterpart considered in
ref. [21]. Comparing dependence of kc on L presented in
fig. 2 with the corresponding plot for the linear case, one
can conclude that they are very close to each other. How-
ever, differences between linear and branched cases appear
in the plots of Jj(L) and Jj(H) presented in figs. 3–6,
respectively. Comparing Jj(H) in figs. 5 and 6 for the
branched Josephson junction with the corresponding plot
in fig. 7 for the linear case, one can find considerable dif-
ference both in the shape and area of the stability region.
In particular, for the branched case the total area of the
stability region is much larger than that for the linear
counterpart. Moreover, due to the fact that the branched
system has more parameters, one can make it tunable
with respect to playing with these parameters. Espe-
cially, this concerns the case of more complicated branch-
ing architecture, e.g., junction with tree-like branching
presented in fig. 8. Static solitons in this structure can

Fig. 8: Tree-like branched Josephson junction.

be modeled in terms of the sine-Gordon equation with the
boundary conditions given on metric tree graph.

Conclusions. – We have studied the current-carrying
states in the branched Josephson junction interacting with
the external magnetic field. The structure is assumed to
be constructed, from three planar superconductors con-
nected to each other via the insulating (or normal metal)
Y-junction. The system is modeled in terms of the sta-
tionary sine-Gordon equation on the metric star graph,
whose solutions describe the phase difference between
the superconductors on the each branch of the junction.
The boundary conditions for the sine-Gordon equation at
the branching point are derived from the relation between
current, local and external magnetic fields. Exact analyt-
ical solutions of the sine-Gordon equation fulfilling such
boundary conditions are obtained. The stability regions
for these solutions are determined in terms of the inte-
gration constant using the Gibbs free energy functional
based (variational) approach. Physical observable values
of the current described in terms of the stable solutions
are derived explicitly as a function of the magnetic field.
Finally, we note that although we considered very simple
branching having the form of Y-junction, the approach we
used can be directly extended for modeling static solitons
in more general branching architectures of the junction,
such as tree, loop, triangle, etc. This can be done similarly
to [34], where the sine-Gordon equation on metric graphs
is solved for Jj = 0. Considering such complicated branch-
ing architectures is of importance from the viewpoint of
the device tuning and optimization in such problems as
SQUID, superconducting qubit, cold atom trapping and
Majorana wire networks.
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