#### PAPER • OPEN ACCESS

# Classification of two-dimensional left(right) unital algebras over algebraically closed fields and $\mathbb R$

To cite this article: H Ahmed et al 2020 J. Phys.: Conf. Ser. 1489 012002

View the article online for updates and enhancements.



## IOP ebooks<sup>™</sup>

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

### Classification of two-dimensional left(right) unital algebras over algebraically closed fields and $\mathbb{R}$

#### H Ahmed<sup>1</sup>, U Bekbaev<sup>2</sup>, I Rakhimov<sup>3</sup>

<sup>1</sup> Department of Math., Faculty of Science, UPM, Selangor, Malaysia &

Depart. of Math., Faculty of Science, Taiz University, Taiz, Yemen

<sup>2</sup> Department of Science in Engineering, Faculty of Engineering, IIUM, Malaysia

<sup>3</sup> Department of Mathematics, Faculty of Computer and Mathematical Sciences, UiTM,

Malaysia & Institute for Mathematical Research (INSPEM), UPM, Serdang, Selangor, Malaysia

E-mail: <sup>1</sup>houida\_m7@yahoo.com; <sup>2</sup>bekbaev@iium.edu.my; <sup>3</sup>rakhimov@upm.edu.my.

Abstract. In this paper we describe all left, right unital and unital algebra structures on twodimensional vector space over any algebraically closed field and  $\mathbb{R}$ . We tabulate the algebras and provide their unit elements.

#### 1. Introduction

The principal building blocks of our descriptions are derived from [1, 4] as the authors have presented complete lists of isomorphism classes of all two-dimensional algebras over algebraically closed fields and  $\mathbb{R}$ , providing the lists of canonical representatives of their structure constant's matrices. The latest lists of all complex unital associative algebras in dimension two, three, four, and five are available in [10], [2], [6] and [9], respectively. The lists of all complex associative algebras (both unital and non-unital) in dimension two and three are presented in [5, 11]. In this paper we describe the isomorphism classes of two-dimensional left(right) unital algebras over any algebraically closed field and  $\mathbb{R}$ . Our approach is totally different than that of [2, 5, 6, 9, 10, 11]. We consider left(right) unital algebras over algebraically closed fields of characteristic not 2,3, characteristic 2, characteristic 3 and over  $\mathbb{R}$  separately according to classification results of [1, 4]. To the best knowledge of authors the descriptions of left(right) unital two-dimensional algebras over algebraically closed fields and  $\mathbb{R}$  have not been given yet. The organization of the paper is as follows. In Section 2 we give the results from [1, 4] mentioned above as tables form. The main results of the paper are in Sections 3,4 and 5. In Sections 3 and 4 we describe all possible left(right) unital and unital algebra structures on two-dimensional vector space over an arbitrary algebraically closed field, whereas Section 5 is devoted to the solution of the problem over  $\mathbb{R}$ .

#### 2. Preliminaries

Let  $\mathbb{F}$  be any field,  $A \otimes B$  stand for the Kronecker product consisting of blocks  $(a_{ij}B)$ , where A = $(a_{ij}), B$  are matrices over  $\mathbb{F}$ . Let  $(\mathbb{A}, \cdot)$  be *m*-dimensional algebra over  $\mathbb{F}$  and  $\mathbf{e} = (e^1, e^2, ..., e^m)$ its basis. Then the bilinear operation  $\cdot$  is represented by a matrix  $A = (A_{ij}^k) \in M(m \times m^2; \mathbb{F})$ as follows

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{e}A(u \otimes v),$$

for  $\mathbf{u} = eu, \mathbf{v} = ev$ , where  $u = (u_1, u_2, ..., u_m)^T$ ,  $v = (v_1, v_2, ..., v_m)^T$  are column coordinate vectors of  $\mathbf{u}$  and  $\mathbf{v}$ , respectively. The matrix  $A \in M(m \times m^2; \mathbb{F})$  defined above is called the matrix of structural constants (MSC) of  $\mathbb{A}$  with respect to the basis e. Further we assume that a basis e is fixed and we do not make a difference between the algebra  $\mathbb{A}$  and its MSC A (see [3]).

If  $e' = (e'^1, e'^2, ..., e'^m)$  is another basis of  $\mathbb{A}$ , e'g = e with  $g \in G = GL(m; \mathbb{F})$ , and A' is MSC of  $\mathbb{A}$  with respect to e' then it is known that

$$A' = gA(g^{-1})^{\otimes 2} \tag{1}$$

is valid. Thus, the isomorphism of algebras  $\mathbb A$  and  $\mathbb B$  over  $\mathbb F$  can be given in terms of MSC as follows.

**Definition 2.1** Two *m*-dimensional algebras  $\mathbb{A}$ ,  $\mathbb{B}$  over  $\mathbb{F}$ , given by their matrices of structure constants A, B, are said to be isomorphic if  $B = gA(g^{-1})^{\otimes 2}$  holds true for some  $g \in GL(m; \mathbb{F})$ .

**Definition 2.2** An element  $\mathbf{1}_L(\mathbf{1}_R)$  of an algebra  $\mathbb{A}$  is called a left (respectively, right) unit if  $\mathbf{1}_L \cdot \mathbf{u} = \mathbf{u}$  (respectively,  $\mathbf{u} \cdot \mathbf{1}_R = \mathbf{u}$ ) for all  $\mathbf{u} \in \mathbb{A}$ . An algebra with the left(right) unit element is said to be left(right) unital algebra, respectively.

**Definition 2.3** An element  $\mathbf{1} \in \mathbb{A}$  is said to be an unit element if  $\mathbf{1} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{1} = \mathbf{u}$  for all  $\mathbf{u} \in \mathbb{A}$ . In this case the algebra  $\mathbb{A}$  is said to be unital.

Further we consider only the case m = 2 and for the simplicity we use

$$A = \left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{array}\right)$$

for MSC, where  $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2, \beta_3, \beta_4$  stand for any elements of  $\mathbb{F}$ .

A classification of all two dimensional algebras over any field  $\mathbb{F}$ , where the second and third degree polynomial has a root, has been given in [1]. The classification there was done via providing the canonical MSCs for such algebras. In this paper we rely on the result of [1], follow its notations and for a convenience we present here the corresponding canonical representatives according to  $\operatorname{Char}(\mathbb{F}) \neq 2, 3$ ,  $\operatorname{Char}(\mathbb{F}) = 2$  and  $\operatorname{Char}(\mathbb{F}) = 3$  cases in form of Tables 1, 2 and 3 below. The parameters given in the canonical representatives may take any values in  $\mathbb{F}$ .

**Table 1.** The list of 2-dimensional algebras in  $Char(\mathbb{F}) \neq 2, 3$ 

|                                              |                   |                     |            |                |            | 0         |                 |                 | ,           |  |
|----------------------------------------------|-------------------|---------------------|------------|----------------|------------|-----------|-----------------|-----------------|-------------|--|
|                                              | Algebra           | Structure constants |            |                |            |           |                 |                 |             |  |
|                                              |                   | $\alpha_1$          | $\alpha_2$ | $\alpha_3$     | $\alpha_4$ | $\beta_1$ | $\beta_2$       | $\beta_3$       | $\beta_4$   |  |
|                                              | $A_1(\mathbf{c})$ | $\alpha_1$          | $\alpha_2$ | $\alpha_2 + 1$ | $\alpha_4$ | $\beta_1$ | $-\alpha_1$     | $-\alpha_1 + 1$ | $-\alpha_2$ |  |
|                                              | $A_2(\mathbf{c})$ | $\alpha_1$          | 0          | 0              | 1          | $\beta_1$ | $\beta_2$       | $1-\alpha_1$    | 0           |  |
| 33                                           | $A_3(\mathbf{c})$ | 0                   | 1          | 1              | 0          | $\beta_1$ | $\beta_2$       | 1               | -1          |  |
| $\neq 2,$                                    | $A_4(\mathbf{c})$ | $\alpha_1$          | 0          | 0              | 0          | 0         | $\beta_2$       | $1-\alpha_1$    | 0           |  |
|                                              | $A_5(\mathbf{c})$ | $\alpha_1$          | 0          | 0              | 0          | 1         | $2\alpha_1 - 1$ | $1-\alpha_1$    | 0           |  |
| L H                                          | $A_6(\mathbf{c})$ | $\alpha_1$          | 0          | 0              | 1          | $\beta_1$ | $1-\alpha_1$    | $-\alpha_1$     | 0           |  |
| $\operatorname{Char}\left(\mathbb{F}\right)$ | $A_7(\mathbf{c})$ | 0                   | 1          | 1              | 0          | $\beta_1$ | 1               | 0               | -1          |  |
| U U                                          | $A_8(\mathbf{c})$ | $\alpha_1$          | 0          | 0              | 0          | 0         | $1-\alpha_1$    | $-\alpha_1$     | 0           |  |
|                                              | $A_9$             | $\frac{1}{3}$       | 0          | 0              | 0          | 1         | $\frac{2}{3}$   | $-\frac{1}{3}$  | 0           |  |
|                                              | $A_{10}$          | 0                   | 1          | 1              | 0          | 0         | Õ               | 0               | -1          |  |
|                                              | A <sub>11</sub>   | 0                   | 1          | 1              | 0          | 1         | 0               | 0               | -1          |  |
|                                              | $A_{12}$          | 0                   | 0          | 0              | 0          | 1         | 0               | 0               | 0           |  |

|                                              | <b>Table 2.</b> The list of 2 dimensional algebras in $\operatorname{Char}(\mathbb{T}) = 2$ |                         |            |                |            |           |              |                 |            |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------|------------|----------------|------------|-----------|--------------|-----------------|------------|--|
|                                              | Algebra                                                                                     | The structure constants |            |                |            |           |              |                 |            |  |
|                                              |                                                                                             | $\alpha_1$              | $\alpha_2$ | $\alpha_3$     | $\alpha_4$ | $\beta_1$ | $\beta_2$    | $\beta_3$       | $\beta_4$  |  |
|                                              | $A_{1,2}(\mathbf{c})$                                                                       | $\alpha_1$              | $\alpha_2$ | $\alpha_2 + 1$ | $\alpha_4$ | $\beta_1$ | $\alpha_1$   | $-\alpha_1 + 1$ | $\alpha_2$ |  |
|                                              | $A_{2,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 0          | 0              | 1          | $\beta_1$ | $\beta_2$    | $1-\alpha_1$    | 0          |  |
| 2                                            | $A_{3,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 1          | 1              | 0          | 0         | $\beta_2$    | $1 - \alpha_1$  | 1          |  |
|                                              | $A_{4,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 0          | 0              | 0          | 0         | $\beta_2$    | $1-\alpha_1$    | 0          |  |
| E E                                          | $A_{5,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 0          | 0              | 0          | 1         | 1            | $1-\alpha_1$    | 0          |  |
| ar (                                         | $A_{6,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 0          | 0              | 1          | $\beta_1$ | $1-\alpha_1$ | $\alpha_1$      | 0          |  |
| $\operatorname{Char}\left(\mathbb{F}\right)$ | $A_{7,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 1          | 1              | 0          | 0         | $1-\alpha_1$ | $\alpha_1$      | 1          |  |
|                                              | $A_{8,2}(\mathbf{c})$                                                                       | $\alpha_1$              | 0          | 0              | 0          | 0         | $1-\alpha_1$ | $\alpha_1$      | 0          |  |
|                                              | $A_{9,2}$                                                                                   | 1                       | 0          | 0              | 0          | 1         | 0            | 1               | 0          |  |
|                                              | $A_{10,2}$                                                                                  | 0                       | 1          | 1              | 0          | 0         | 0            | 0               | 1          |  |
|                                              | $A_{11,2}$                                                                                  | 1                       | 1          | 1              | 0          | 0         | 1            | 1               | 1          |  |
|                                              | $A_{12,2}$                                                                                  | 0                       | 0          | 0              | 0          | 1         | 0            | 0               | 0          |  |

**Table 2.** The list of 2-dimensional algebras in  $Char(\mathbb{F}) = 2$ 

**Table 3.** The list of 2-dimensional algebras in  $Char(\mathbb{F}) = 3$ 

|          | Algebra               | The structure constants |            |                |            |           |                 |                 |             |  |
|----------|-----------------------|-------------------------|------------|----------------|------------|-----------|-----------------|-----------------|-------------|--|
|          |                       | $\alpha_1$              | $\alpha_2$ | $\alpha_3$     | $\alpha_4$ | $\beta_1$ | $\beta_2$       | $\beta_3$       | $\beta_4$   |  |
|          | $A_{1,3}({f c})$      | $\alpha_1$              | $\alpha_2$ | $\alpha_2 + 1$ | $\alpha_4$ | $\beta_1$ | $-\alpha_1$     | $-\alpha_1 + 1$ | $-\alpha_2$ |  |
|          | $A_{2,3}(\mathbf{c})$ | $\alpha_1$              | 0          | 0              | 1          | $\beta_1$ | $\beta_2$       | $1-\alpha_1$    | 0           |  |
| n        | $A_{3,3}(\mathbf{c})$ | 0                       | 1          | 1              | 0          | $\beta_1$ | $\beta_2$       | 1               | -1          |  |
|          | $A_{4,3}(\mathbf{c})$ | $\alpha_1$              | 0          | 0              | 0          | 0         | $\beta_2$       | $1-\alpha_1$    | 0           |  |
| E        | $A_{5,3}(\mathbf{c})$ | $\alpha_1$              | 0          | 0              | 0          | 1         | $-\alpha_1 - 1$ | $1-\alpha_1$    | 0           |  |
| Char (F) | $A_{6,3}(\mathbf{c})$ | $\alpha_1$              | 0          | 0              | 1          | $\beta_1$ | $1 - \alpha_1$  | $-\alpha_1$     | 0           |  |
| Chi      | $A_{7,3}(\mathbf{c})$ | 0                       | 1          | 1              | 0          | $\beta_1$ | 1               | 0               | -1          |  |
|          | $A_{8,3}(\mathbf{c})$ | $\alpha_1$              | 0          | 0              | 0          | 0         | $1 - \alpha_1$  | $-\alpha_1$     | 0           |  |
|          | $A_{9,3}$             | 0                       | 1          | 1              | 0          | 1         | 0               | 0               | -1          |  |
|          | $A_{10,3}$            | 0                       | 1          | 1              | 0          | 0         | 0               | 0               | -1          |  |
|          | $A_{11,3}$            | 1                       | 0          | 0              | 0          | 1         | -1              | -1              | 0           |  |
|          | $A_{12,3}$            | 0                       | 0          | 0              | 0          | 1         | 0               | 0               | 0           |  |

#### 3. Two-dimensional left unital algebras

Let  $\mathbb{A}$  be a left unital algebra. In terms of its MSC A the algebra  $\mathbb{A}$  to be left unital is written as follows:

$$A(l \otimes u) = u, \tag{2}$$

where  $u = (u_1, u_2, ..., u_m)^T$ , and  $l = (t_1, t_2, ..., t_m)^T$  are column coordinate vectors of **u** and  $\mathbf{1}_L$ , respectively.

It is easy to see that for a given 2-dimensional algebra  $\mathbb{A}$  with MSC  $A = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{pmatrix}$ the existence of a left unit element is equivalent to the equality of ranks of the matrices

$$M = \begin{pmatrix} \alpha_1 & \alpha_3 \\ \beta_1 & \beta_3 \\ \alpha_2 & \alpha_4 \\ \beta_2 - \alpha_1 & \beta_4 - \alpha_3 \end{pmatrix} \text{ and } M' = \begin{pmatrix} \alpha_1 & \alpha_3 & 1 \\ \beta_1 & \beta_3 & 0 \\ \alpha_2 & \alpha_4 & 0 \\ \beta_2 - \alpha_1 & \beta_4 - \alpha_3 & 0 \end{pmatrix}$$

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012002 doi:10.1088/1742-6596/1489/1/012002

This equality holds if and only if

$$\begin{vmatrix} \beta_1 & \beta_3 \\ \alpha_2 & \alpha_4 \end{vmatrix} = \begin{vmatrix} \beta_1 & \beta_3 \\ \beta_2 - \alpha_1 & \beta_4 - \alpha_3 \end{vmatrix} = \begin{vmatrix} \alpha_2 & \alpha_4 \\ \beta_2 - \alpha_1 & \beta_4 - \alpha_3 \end{vmatrix} = 0,$$
(3)

and at least one of the following two cases holds true:

$$(\alpha_1, \alpha_3) \neq 0, \ (\beta_1, \beta_3) = (\alpha_2, \alpha_4) = (\beta_2 - \alpha_1, \beta_4 - \alpha_3) = 0,$$
 (4)

or

$$\begin{vmatrix} \alpha_1 & \alpha_3 \\ a & b \end{vmatrix} \neq 0, \text{ whenever there exists nonzero } (a,b) \in \{(\beta_1,\beta_3), (\alpha_2,\alpha_4), (\beta_2-\alpha_1,\beta_4-\alpha_3)\}.$$
(5)

Note that the conditions (3), (4) and (3), (5) correspond to the existence of many and unique left units, respectively.

**Theorem 3.1** Over any algebraically closed field  $\mathbb{F}$  (Char ( $\mathbb{F}$ )  $\neq$  2) any nontrivial 2-dimensional left unital algebra is isomorphic to only one of the following non-isomorphic left unital algebras presented by their MSC:

• 
$$A_1\left(\alpha_1, \frac{\alpha_1(1-\alpha_1)}{\beta_1} - \frac{1}{2}, \frac{\alpha_1(1-\alpha_1)^2}{\beta_1^2} - \frac{1-\alpha_1}{2\beta_1}, \beta_1\right)$$
  
=  $\begin{pmatrix} \alpha_1 & \frac{2\alpha_1 - 2\alpha_1^2 - \beta_1}{2\beta_1} & \frac{2\alpha_1 - 2\alpha_1^2 + \beta_1}{2\beta_1} & \frac{2\alpha_1 - 4\alpha_1^2 + 2\alpha_1^3 - \beta_1 + \alpha_1\beta_1}{2\beta_1^2} \\ \beta_1 & -\alpha_1 & 1 - \alpha_1 & \frac{-2\alpha_1 + 2\alpha_1^2 + \beta_1}{2\beta_1} \end{pmatrix}$ , where  $\beta_1 \neq 0$   
•  $A_1\left(1, \alpha_2, \frac{\alpha_2(2\alpha_2+1)}{2}, 0\right) = \begin{pmatrix} 1 & \alpha_2 & 1 + \alpha_2 & \frac{1}{2}\left(\alpha_2 + 2\alpha_2^2\right) \\ 0 & -1 & 0 & -\alpha_2 \end{pmatrix}$ ,  
•  $A_2(\alpha_1, 0, \alpha_1) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1 \\ 0 & \alpha_1 & -\alpha_1 + 1 & 0 \end{pmatrix}$ , where  $\alpha_1 \neq 0$ ,  
•  $A_4(\alpha_1, \alpha_1) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & \alpha_1 & -\alpha_1 + 1 & 0 \end{pmatrix}$ , where  $\alpha_1 \neq 0$ ,  
•  $A_6\left(\frac{1}{2}, 0\right) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$ ,  
•  $A_8\left(\frac{1}{2}\right) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$ .  
Proof. Let us consider  $A_1(\mathbf{c}) = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_2 + 1 & \alpha_4 \\ \alpha_1 & \alpha_1 & \alpha_1 & \alpha_2 & \alpha_2 + 1 & \alpha_4 \end{pmatrix}$ .

**Proof.** Let us consider  $A_1(\mathbf{c}) = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_2 + 1 & \alpha_4 \\ \beta_1 & -\alpha_1 & -\alpha_1 + 1 & -\alpha_2 \end{pmatrix}$ . Then  $M = \begin{pmatrix} \alpha_1 & \alpha_2 + 1 \\ \beta_1 & 1 - \alpha_1 \\ \alpha_2 & \alpha_4 \\ -2\alpha_1 & -2\alpha_2 - 1 \end{pmatrix}$  and the equality (3) means

$$\beta_1 \alpha_4 - \alpha_2 (1 - \alpha_1) = -\beta_1 (2\alpha_2 + 1) + 2\alpha_1 (1 - \alpha_1) = -\alpha_2 (2\alpha_2 + 1) + 2\alpha_1 \alpha_4 = 0$$

and (4) doesn't occur. There are two possibilities: **Case 1.**  $\beta_1 \neq 0$ . In this case the equality (3) is equivalent to

$$\alpha_4 = \frac{\alpha_2(1-\alpha_1)}{\beta_1}, \alpha_2 = \frac{\alpha_1(1-\alpha_1)}{\beta_1} - \frac{1}{2}, \text{ and } \begin{vmatrix} \alpha_1 & \alpha_2 + 1 \\ \beta_1 & 1 - \alpha_1 \end{vmatrix} = -\frac{\beta_1}{2} \neq 0.$$

**IOP** Publishing

Therefore,  $A_1\left(\alpha_1, \frac{\alpha_1(1-\alpha_1)}{\beta_1} - \frac{1}{2}, \frac{\alpha_1(1-\alpha_1)^2}{\beta_1^2} - \frac{1-\alpha_1}{2\beta_1}, \beta_1\right)$  has a left unit, where  $\beta_1 \neq 0$ . <u>Case 2.</u>  $\beta_1 = 0$ . In this case the equality (3) is equivalent to

$$\alpha_2(1 - \alpha_1) = \alpha_1(1 - \alpha_1) = -\alpha_2(2\alpha_2 + 1) + 2\alpha_1\alpha_4 = 0$$

and (5) occurs if and only if  $\alpha_1 = 1$  and therefore

$$A_1\left(1,\alpha_2,\frac{\alpha_2(2\alpha_2+1)}{2},0\right)$$

also has a left unit.

Consider  $A_2(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1 \\ \beta_1 & \beta_2 & 1 - \alpha_1 & 0 \end{pmatrix}$ . Then  $M = \begin{pmatrix} \alpha_1 & 0 \\ \beta_1 & 1 - \alpha_1 \\ 0 & 1 \\ \beta_2 - \alpha_1 & 0 \end{pmatrix}$ .

The equality (3) means

$$\beta_1 = (1 - \alpha_1)(\beta_2 - \alpha_1) = \beta_2 - \alpha_1 = 0$$

and (4) doesn't occur. Therefore,  $A_2(\alpha_1, 0, \alpha_1)$  has a left unit, where  $\alpha_1 \neq 0$ .

In 
$$A_3(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ \beta_1 & \beta_2 & 1 & -1 \end{pmatrix}$$
 case we have  $M = \begin{pmatrix} \alpha_1 & 1 \\ \beta_1 & 1 \\ 1 & 0 \\ \beta_2 & -2 \end{pmatrix}$  and  $\begin{vmatrix} 1 & 0 \\ \beta_2 & -2 \end{vmatrix} = -2 \neq 0$ ,

which shows the absence of a left unit.

Let us consider 
$$A_4(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & \beta_2 & 1 - \alpha_1 & 0 \end{pmatrix}$$
. Then  $M = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & 1 - \alpha_1 & 0 \\ 0 & 0 & \beta_2 - \alpha_1 & 0 \end{pmatrix}$ , the

1

equality (3) is equivalent to  $(1 - \alpha_1)(\alpha_1 - \beta_2) = 0$  and therefore  $A_4(1, 1)$  has left units. In this case (5) happens if and only if  $\alpha_1 \neq 0, 1, \alpha_1 = \beta_2$ . So  $A_4(\alpha_1, \alpha_1)$  has a left unit, where  $\alpha_1 \neq 0$ . 1 01

In 
$$A_5(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 1 & 2\alpha_1 - 1 & 1 - \alpha_1 & 0 \end{pmatrix}$$
 case one has  $M = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 1 & 1 - \alpha_1 \\ 0 & 0 \\ \alpha_1 - 1 & 0 \end{pmatrix}$ , the

equality (3) means  $(1 - \alpha_1)(\alpha_1 - 1) = 0$ , so we have  $\alpha_1 = 1$ . But neither (4) no (5) occurs, that means that among  $A_5(\alpha_1)$  there is no algebra with a left unit. ~ \

In 
$$A_6(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1\\ \beta_1 & 1 - \alpha_1 & -\alpha_1 & 0 \end{pmatrix}$$
 case we have  $M = \begin{pmatrix} \alpha_1 & 0\\ \beta_1 & -\alpha_1\\ 0 & 1\\ 1 - 2\alpha_1 & 0 \end{pmatrix}$ , the equality

(3) is equivalent to  $\beta_1 = \alpha_1(1 - 2\alpha_1) = -1 + 2\alpha_1 = 0$  and therefore  $A_6(\frac{1}{2}, 0)$  has a left unit.  $\begin{pmatrix} 0 & 1 \end{pmatrix}$ 

In 
$$A_7(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ \beta_1 & 1 & 0 & -1 \end{pmatrix}$$
 case we have  $M = \begin{pmatrix} 0 & 1 & 1 \\ \beta_1 & 0 & 1 & 0 \\ 1 & 0 & 1 & -2 \end{pmatrix}$ , and the inequality

$$\begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} = -2 \neq 0$$
 shows the absence of a left unit due to (3).

In 
$$A_8(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & 1 - \alpha_1 & -\alpha_1 & 0 \end{pmatrix}$$
 case  $M = \begin{pmatrix} \alpha_1 & 0 \\ 0 & -\alpha_1 \\ 0 & 0 \\ 1 - 2\alpha_1 & 0 \end{pmatrix}$ , the equality (3) gives

 $\alpha_1(1-2\alpha_1)=0$  and therefore  $A_8(\frac{1}{2})$  has a left unit.

**IOP** Publishing

It is easy to see that for  $A_9, A_{10}, A_{11}$  the equality (3) does not occur, the equalities (4), (5) don't occur for  $A_{12}$  and therefore they have no left units.

Note that according to Theorem 3.1 and Theorem 3.3 from [1, 4] in the cases of  $Char(\mathbb{F}) \neq 2,3$ and  $Char(\mathbb{F}) = 3$  the lists are identical. Therefore, we summarize the final result for 2dimensional left unital algebras in Table 4 (see Appendix), where all left units as well are given.

We present the corresponding results in characteristic of  $\mathbb{F}$  is 2 case without proof as follows.

**Theorem 3.2** Over any algebraically closed field  $\mathbb{F}$  of characteristic 2 any nontrivial 2dimensional left unital algebra is isomorphic to only one of the following non-isomorphic left unital algebras presented by their MSC:

- $A_{1,2}(\alpha_1, 0, \alpha_4, 0) = \begin{pmatrix} \alpha_1 & 0 & 1 & \alpha_4 \\ 0 & \alpha_1 & 1 \alpha_1 & 0 \end{pmatrix}$ , where  $\alpha_1 \neq 0$ ,
- $A_{2,2}(\alpha_1, 0, \alpha_1) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1 \\ 0 & \alpha_1 & 1 \alpha_1 & 0 \end{pmatrix}$ , where  $\alpha_1 \neq 0$ ,
- $A_{3,2}(1,\beta_2) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & \beta_2 & 0 & 1 \end{pmatrix},$
- $A_{4,2}(\alpha_1, \alpha_1) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 0 & \alpha_1 & 1 \alpha_1 & 0 \end{pmatrix}$ , where  $\alpha_1 \neq 0$ ,
- $A_{7,2}(0) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ , •  $A_{10,2} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ .

#### 4. Two-dimensional right unital algebras

Now let us consider the existence of a right unit for an algebra A given by its MSC  $A = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{pmatrix}$ . It is easy to see that A has a right unit element if and only if the following matrices

$$\begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \\ \alpha_3 & \alpha_4 \\ \beta_3 - \alpha_1 & \beta_4 - \alpha_2 \end{pmatrix}, \begin{pmatrix} \alpha_1 & \alpha_2 & 1 \\ \beta_1 & \beta_2 & 0 \\ \alpha_3 & \alpha_4 & 0 \\ \beta_3 - \alpha_1 & \beta_4 - \alpha_2 & 0 \end{pmatrix}$$

have equal ranks. It happens if and only if

$$\begin{vmatrix} \beta_1 & \beta_2 \\ \alpha_3 & \alpha_4 \end{vmatrix} = \begin{vmatrix} \beta_1 & \beta_2 \\ \beta_3 - \alpha_1 & \beta_4 - \alpha_2 \end{vmatrix} = \begin{vmatrix} \alpha_3 & \alpha_4 \\ \beta_3 - \alpha_1 & \beta_4 - \alpha_2 \end{vmatrix} = 0$$

and at least one of the following two cases holds true

$$(\alpha_1, \alpha_2) \neq 0, \ (\beta_1, \beta_2) = (\alpha_3, \alpha_4) = (\beta_3 - \alpha_1, \beta_4 - \alpha_2) = 0,$$

or

$$\begin{vmatrix} \alpha_1 & \alpha_2 \\ a & b \end{vmatrix} \neq 0, \text{ if there exists nonzero } (a,b) \in \{(\beta_1,\beta_2), (\alpha_3,\alpha_4), (\beta_3-\alpha_1,\beta_4-\alpha_2)\}.$$

Because of similarity of proofs in right unital cases to those of left unital ones we present the result without proof by the following theorems.

**IOP** Publishing

IOP Conf. Series: Journal of Physics: Conf. Series **1489** (2020) 012002 doi:10.1088/1742-6596/1489/1/012002

**Theorem 4.1** Over any algebraically closed field  $\mathbb{F}$  of characteristic not 2 any nontrivial 2dimensional right unital algebra is isomorphic to only one of the following non-isomorphic right unital algebras presented by their MSC:

- $A_1\left(\alpha_1, \frac{\alpha_1(1-2\alpha_1)}{2\beta_1}, -\frac{\alpha_1^2(1-2\alpha_1)}{2\beta_1^2} \frac{\alpha_1}{\beta_1}, \beta_1\right), \text{ where } \alpha_1\beta_1 \neq 0,$
- $A_1(0, \alpha_2, -2\alpha_2(\alpha_2+1), 0)$ , where  $\alpha_2(1+\alpha_2) \neq 0$ ,
- $A_1\left(\frac{1}{2}, -1, \alpha_4, 0\right)$ ,
- $A_2\left(\frac{1}{2}, 0, \beta_2\right)$ ,
- $A_4\left(\frac{1}{2},\beta_2\right)$ .

**Theorem 4.2** Over any algebraically closed field  $\mathbb{F}$  of characteristic 2 any nontrivial 2dimensional right unital algebra is isomorphic to only one of the following non-isomorphic right unital algebras presented by their MSC:

- $A_{1,2}(0, \alpha_2, 0, \beta_1)$ , where  $\alpha_2 \neq 0$ ,
- $A_{3,2}(\alpha_1, 0),$
- $A_{6,2}(\alpha_1, 0)$ , where  $\alpha_1 \neq 0$ ,
- $A_{7,2}(1)$ ,
- $A_{8,2}(\alpha_1)$ , where  $\alpha_1 \neq 0$ ,
- $A_{10,2}$ .

The results obtained are summarized in Table 5 (see Appendix), where all right units as well are listed.

**Corollary 4.3** Over an algebraically closed field  $\mathbb{F}$ ,  $(Char(\mathbb{F}) \neq 2)$ , there exist, up to isomorphism, only two non-trivial 2-dimensional unital algebras given by their matrices of structure constants as follows

$$A_2\left(\frac{1}{2},0,\frac{1}{2}\right) = \left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 & 1\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right), \quad A_4\left(\frac{1}{2},\frac{1}{2}\right) = \left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$$

**Corollary 4.4** Over an algebraically closed field  $\mathbb{F}$ ,  $(Char(\mathbb{F}) = 2)$ , there exists, up to isomorphism, only two non-trivial 2-dimensional unital algebras given by their matrices of structure constants as

$$A_{3,2}(1,0) = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_{10,2} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

5. Two-dimensional left and right unital real algebras Due to [4] we have the following classification theorem.

**Theorem 5.1** Any non-trivial 2-dimensional real algebra is isomorphic to only one of the following listed, by their matrices of structure constants, algebras:

- $A_{1,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_2 + 1 & \alpha_4 \\ \beta_1 & -\alpha_1 & -\alpha_1 + 1 & -\alpha_2 \end{pmatrix}$ , where  $\mathbf{c} = (\alpha_1, \alpha_2, \alpha_4, \beta_1) \in \mathbb{R}^4$ ,
- $A_{2,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1 \\ \beta_1 & \beta_2 & 1 \alpha_1 & 0 \end{pmatrix}$ , where  $\beta_1 \ge 0$ ,  $\mathbf{c} = (\alpha_1, \beta_1, \beta_2) \in \mathbb{R}^3$ ,
- $A_{3,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & -1 \\ \beta_1 & \beta_2 & 1 \alpha_1 & 0 \end{pmatrix}$ , where  $\beta_1 \ge 0$ ,  $\mathbf{c} = (\alpha_1, \beta_1, \beta_2) \in \mathbb{R}^3$ ,

**IOP** Publishing

• 
$$A_{4,r}(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ \beta_1 & \beta_2 & 1 & -1 \end{pmatrix}$$
, where  $\mathbf{c} = (\beta_1, \beta_2) \in \mathbb{R}^2$ ,  
•  $A_{5,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ 1 & 2\alpha_1 - 1 & 1 - \alpha_1 & 0 \end{pmatrix}$ , where  $\mathbf{c} = (\alpha_1, \beta_2) \in \mathbb{R}^2$ ,  
•  $A_{6,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & 1 \\ \beta_1 & 1 - \alpha_1 & -\alpha_1 & 0 \end{pmatrix}$ , where  $\mathbf{c} = \alpha_1 \in \mathbb{R}$ ,  
•  $A_{7,r}(\mathbf{c}) = \begin{pmatrix} \alpha_1 & 0 & 0 & -1 \\ \beta_1 & 1 - \alpha_1 & -\alpha_1 & 0 \end{pmatrix}$ , where  $\beta_1 \ge 0$ ,  $\mathbf{c} = (\alpha_1, \beta_1) \in \mathbb{R}^2$ ,  
•  $A_{8,r}(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ \beta_1 & 1 & 0 & -1 \end{pmatrix}$ , where  $\mathbf{c} = \beta_1 \in \mathbb{R}$ ,  
•  $A_{9,r}(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 - \alpha_1 & -\alpha_1 & 0 \end{pmatrix}$ , where  $\mathbf{c} = \alpha_1 \in \mathbb{R}$ ,  
•  $A_{10,r}(\mathbf{c}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 2^2 & -\frac{1}{3} & 0 \end{pmatrix}$ ,  
•  $A_{11,r} = \begin{pmatrix} \frac{1}{3} & 0 & 0 & 0 \\ 1 & 2^2 & -\frac{1}{3} & 0 \end{pmatrix}$ ,  
•  $A_{12,r} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \end{pmatrix}$ ,  
•  $A_{13,r} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \end{pmatrix}$ ,  
•  $A_{14,r} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ ,  
•  $A_{15,r} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ .

Owing to Theorem 5.1 the following results can be proved.

**Theorem 5.2** Over the real field  $\mathbb{R}$  up to isomorphism there exist only the following nontrivial non-isomorphic two dimensional left unital algebras

$$\begin{split} \bullet \ A_{1,r} \left( \alpha_1, \frac{\alpha_1(1-\alpha_1)}{\beta_1} - \frac{1}{2}, \frac{\alpha_1(1-\alpha_1)^2}{\beta_1^2} - \frac{1-\alpha_1}{2\beta_1}, \beta_1 \right) \\ &= \left( \begin{array}{ccc} \alpha_1 & \frac{2\alpha_1 - 2\alpha_1^2 - \beta_1}{2\beta_1} & \frac{2\alpha_1 - 2\alpha_1^2 + \beta_1}{2\beta_1} & \frac{2\alpha_1 - 4\alpha_1^2 + 2\alpha_1^3 - \beta_1 + \alpha_1\beta_1}{2\beta_1^2} \\ \beta_1 & -\alpha_1 & 1 - \alpha_1 & \frac{-2\alpha_1 + 2\alpha_1^2 + \beta_1}{2\beta_1} \end{array} \right), \ where \ \beta_1 \neq 0, \end{split} \\ \bullet \ A_{1,r} \left( 1, \alpha_2, \frac{\alpha_2(2\alpha_2 + 1)}{2}, 0 \right) = \left( \begin{array}{ccc} 1 & \alpha_2 & 1 + \alpha_2 & \frac{1}{2} \left( \alpha_2 + 2\alpha_2^2 \right) \\ 0 & -1 & 0 & -\alpha_2 \end{array} \right), \end{aligned} \\ \bullet \ A_{2,r}(\alpha_1, 0, \alpha_1) = \left( \begin{array}{ccc} \alpha_1 & 0 & 0 & 1 \\ 0 & \alpha_1 & -\alpha_1 + 1 & 0 \end{array} \right), \ where \ \alpha_1 \neq 0, \end{aligned} \\ \bullet \ A_{3,r}(\alpha_1, 0, \alpha_1) = \left( \begin{array}{ccc} \alpha_1 & 0 & 0 & -1 \\ 0 & \alpha_1 & -\alpha_1 + 1 & 0 \end{array} \right), \ where \ \alpha_1 \neq 0, \end{aligned} \\ \bullet \ A_{5,r}(\alpha_1, \alpha_1) = \left( \begin{array}{ccc} \alpha_1 & 0 & 0 & 0 \\ 0 & \alpha_1 & -\alpha_1 + 1 & 0 \end{array} \right), \ where \ \alpha_1 \neq 0, \end{aligned} \\ \bullet \ A_{7,r} \left( \frac{1}{2}, 0 \right) = \left( \begin{array}{ccc} \frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right), \end{split}$$

• 
$$A_{8,r}\left(\frac{1}{2},0\right) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & -1\\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix},$$
  
•  $A_{10,r}\left(\frac{1}{2}\right) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}.$ 

**Theorem 5.3** Over the real field  $\mathbb{R}$  up to isomorphism there exist only the following nontrivial non-isomorphic two dimensional right unital algebras:

- $A_{1,r}\left(\alpha_1, \frac{\alpha_1(1-2\alpha_1)}{2\beta_1}, -\frac{\alpha_1^2(1-2\alpha_1)}{2\beta_1^2} \frac{\alpha_1}{\beta_1}, \beta_1\right), \text{ where } \alpha_1\beta_1 \neq 0,$
- $A_{1,r}(0, \alpha_2, -2\alpha_2(\alpha_2+1), 0)$ , where  $\alpha_2 \neq 0$ ,
- $A_{1,r}\left(\frac{1}{2},-1,\alpha_4,0\right),$
- $A_{2,r}\left(\frac{1}{2},0,\beta_2\right)$ ,
- $A_{3,r}\left(\frac{1}{2},0,\beta_2\right)$ ,
- $A_{5,r}\left(\frac{1}{2},\beta_2\right)$ .

The results are represented in Tables 6 and 7 (see Appendix), where the units also are provided.

**Corollary 5.4** Up to isomorphism there are only the following nontrivial 2-dimensional real unital algebras.

$$A_{2,r}\left(\frac{1}{2},0,\frac{1}{2}\right) = \left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 & 1\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right), \ A_{3,r}\left(\frac{1}{2},0,\frac{1}{2}\right) = \left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 & -1\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right),$$
$$A_{5,r}\left(\frac{1}{2},\frac{1}{2}\right) = \left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\end{array}\right).$$

Among these algebras only  $A_{3,r}\left(\frac{1}{2}, 0, \frac{1}{2}\right)$  is a division algebra and it is isomorphic to the algebra of complex numbers.

#### Acknowledgments

The first author thanks Universiti Putra Malaysia for support via grant IPS 9537100/UPM and the second author's research was supported by FRGS14-153-0394, MOHE.

#### References

- Ahmed H, Bekbaev U and Rakhimov I 2017 Complete classification of two-dimensional algebras, AIP Conference Proceedings 1830, 070016, doi: 10.1063/1.4980965.
- [2] Arezina P, Caldwell S, Davis J and Frederick B 1996 Three-dimensional Associative Unital algebras, *Journal of PGSS*, www.pgss.mcs.cmu.edu/home/Publications.html, 15, 227-237.
- [3] Bekbaev U 2015 On classification of finite dimensional algebras arXiv:1504.01194.
- [4] Bekbaev U 2017 Complete classification of two-dimensional general, commutative, commutative Jordan, division and evolution algebras arXiv: 1705.01237.
- [5] Fialowski A, Penkava M and Phillipson M 2011 Deformations of Complex 3-dimensional associative algebras, Journal of Generalized Lie Theory and Applications, 5, 1-22.
- [6] Gabriel R 1974 Finite representation type is open Lecture Notes in Math., 488, 132-155.
- [7] Goze M and Remm E 2011 2-dimensional algebras, African Journal of Mathematical Physics, 10, 81-91.
- [8] Kaygorodov I and Volkov Y 2019 The variety of 2-dimensional algebras over an algebraically closed field, Canadian Journal of Mathematics, 71(4), 819–842.
- [9] Mazolla G 1979 The algebraic and geometric classification associative algebras of dimension five, Manuscripta Math., 27, 1-21.
- [10] Peirce B 1881 Linear associative algebra Amer. J. Math., 4, 97-221.
- [11] Rakhimov I, Rikhsiboev I and Basri W 2009 Complete lists of low dimensional complex associative algebras, arXiv:0910.0932v2 [math.RA].

#### 6. Appendix

|                                            | Algebra                                                                                                                                                                                  | $1_L$                                                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 2                                          | $A_1\left(\alpha_1, \frac{\alpha_1(1-\alpha_1)}{\beta_1} - \frac{1}{2}, \frac{\alpha_1(1-\alpha_1)^2}{\beta_1^2} - \frac{1-\alpha_1}{2\beta_1}, \beta_1\right)$ , where $\beta_1 \neq 0$ | $\left(\begin{array}{c} \frac{-2(1-\alpha_1)}{\beta_1}\\ 2 \end{array}\right)$ |
|                                            | $A_1\left(1,\alpha_2,\frac{\alpha_2(2\alpha_2+1)}{2},0\right)$                                                                                                                           | $\begin{pmatrix} -2\alpha_2 - 1 \\ 2 \end{pmatrix}$                            |
|                                            | $A_2(\alpha_1, 0, \alpha_1)$ , where $\alpha_1 \neq 0$                                                                                                                                   | $\left(\begin{array}{c} \frac{1}{\alpha_1}\\ 0\end{array}\right)$              |
| $\mathcal{C}har\left(\mathbb{F} ight)  eq$ | $A_4(1,1)$                                                                                                                                                                               | $\begin{pmatrix} 1\\t \end{pmatrix}$ , where $t \in \mathbb{F}$                |
| Char                                       | $A_4(\alpha_1, \alpha_1)$ , where $\alpha_1 \neq 0, 1$                                                                                                                                   | $\left(\begin{array}{c} \frac{1}{\alpha_1}\\ 0\end{array}\right)$              |
| -                                          | $A_6\left(\frac{1}{2},0\right)$                                                                                                                                                          | $\begin{pmatrix} 2\\0 \end{pmatrix}$                                           |
|                                            | $A_8(\frac{1}{2})$                                                                                                                                                                       | $\left(\begin{array}{c}2\\0\end{array}\right)$                                 |
|                                            | $A_{1,2}(\alpha_1, 0, \alpha_4, 0)$ , where $\alpha_1 \neq 0$                                                                                                                            | $\left(\begin{array}{c}\frac{1}{\alpha_1}\\0\end{array}\right)$                |
|                                            | $A_{2,2}(\alpha_1, 0, \alpha_1)$ , where $\alpha_1 \neq 0$                                                                                                                               | $\begin{pmatrix} \frac{1}{\alpha_1} \\ 0 \end{pmatrix}$                        |
| = 2                                        | $A_{3,2}(1,eta_2)$                                                                                                                                                                       | $\left(\begin{array}{c}0\\1\end{array}\right)$                                 |
| $Char\left(\mathbb{F}\right)$              | $A_{4,2}(1,1)$                                                                                                                                                                           | $\begin{pmatrix} 1\\t \end{pmatrix}$ , where $t \in \mathbb{F}$                |
|                                            | $A_{4,2}(\alpha_1, \alpha_1)$ , where $\alpha_1 \neq 0, 1$                                                                                                                               | $\left(\begin{array}{c} \frac{1}{\alpha_1}\\ 0\end{array}\right)$              |
|                                            | $A_{7,2}(0)$                                                                                                                                                                             | $\begin{pmatrix} 0\\1 \end{pmatrix}$                                           |
|                                            | $A_{10,2}$                                                                                                                                                                               | $\left(\begin{array}{c}0\\1\end{array}\right)$                                 |

 Table 4. 2-dimensional left unital algebras

|                                | Table 0. 2-unichsional right unital algeb.                                                                                                                                                 |                                                                        |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                | Algebra                                                                                                                                                                                    | $1_R$                                                                  |
| <b>≠</b> 2                     | $A_1\left(\alpha_1, \frac{\alpha_1(1-2\alpha_1)}{2\beta_1}, \frac{-\alpha_1^2(1-2\alpha_1)}{2\beta_1^2} - \frac{\alpha_1}{\beta_1}, \beta_1\right), \text{ where } \alpha_1\beta_1 \neq 0$ | $\left(\begin{array}{c}2\\\frac{2\beta_1}{\alpha_1}\end{array}\right)$ |
|                                | $A_1(0, \alpha_2, -2\alpha_2(\alpha_2 + 1), 0)$ , where $\alpha_2 \neq 0$                                                                                                                  | $\begin{pmatrix} \alpha_1 \\ 2 \\ \frac{1}{\alpha_2} \end{pmatrix}$    |
|                                | $A_1\left(\frac{1}{2}, -1, \alpha_4, 0\right)$                                                                                                                                             | $\left( \begin{array}{c} 0 \end{array} \right)$                        |
| $Char(\mathbb{F}) \neq 2$      | $A_2(rac{1}{2},0,eta_2)$                                                                                                                                                                  | $\left(\begin{array}{c}2\\0\end{array}\right)$                         |
| Cha                            | $A_4(rac{1}{2},0)$                                                                                                                                                                        | $\begin{pmatrix} 2\\t \end{pmatrix}$ , where $t \in \mathbb{F}$        |
|                                | $A_4(\frac{1}{2},\beta_2)$ , where $\beta_2 \neq 0$                                                                                                                                        | $\begin{pmatrix} 2\\0 \end{pmatrix}$                                   |
|                                | $A_{1,2}(0, \alpha_2, 0, \beta_1)$ , where $\alpha_2 \neq 0$                                                                                                                               | $\begin{pmatrix} 0\\ \frac{1}{\alpha_2} \end{pmatrix}$                 |
|                                | $A_{3,2}(\alpha_1,0)$                                                                                                                                                                      | $\left(\begin{array}{c}0\\1\end{array}\right)$                         |
| 2                              | $A_{6,2}(\alpha_1, 0)$ , where $\alpha_1 \neq 0$                                                                                                                                           | $\left(\begin{array}{c} \frac{1}{\alpha_1} \\ 0 \end{array}\right)$    |
| $Char\left(\mathbb{F} ight)=2$ | $A_{7,2}(1)$                                                                                                                                                                               | $\left(\begin{array}{c}0\\1\end{array}\right)$                         |
|                                | $A_{8,2}(1)$                                                                                                                                                                               | $\begin{pmatrix} 1\\t \end{pmatrix}$ , where $t \in \mathbb{F}$        |
|                                | $A_{8,2}(\alpha_1)$ , where $\alpha_1 \neq 0, 1$                                                                                                                                           | $\left(\begin{array}{c}1\\0\end{array}\right)$                         |
|                                | $A_{10,2}$                                                                                                                                                                                 | $\left(\begin{array}{c}0\\1\end{array}\right)$                         |

 Table 5. 2-dimensional right unital algebras.

**IOP** Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1489 (2020) 012002 doi:10.1088/1742-6596/1489/1/012002

| Algebra                                                                                                                                                                                                                                                                                                   | $1_L$                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $\overline{A_{1,r}\left(\alpha_{1},\frac{\alpha_{1}(1-\alpha_{1})}{\beta_{1}}-\frac{1}{2},\frac{\alpha_{1}(1-\alpha_{1})^{2}}{\beta_{1}^{2}}-\frac{1-\alpha_{1}}{2\beta_{1}},\beta_{1}\right)}, \text{ where } \beta_{1} \neq 0$ $A_{1,r}\left(1,\alpha_{2},\frac{\alpha_{2}(2\alpha_{2}+1)}{2},0\right)$ | $\left(\begin{array}{c} \frac{-2(1-\alpha_1)}{\beta_1}\\ 2\end{array}\right)$ |
| $A_{1,r}\left(1,\alpha_2,\frac{\alpha_2(2\alpha_2+1)}{2},0\right)$                                                                                                                                                                                                                                        |                                                                               |
| $A_{2,r}(\alpha_1, 0, \alpha_1)$ , where $\alpha_1 \neq 0$                                                                                                                                                                                                                                                | $\left(\begin{array}{c} \frac{1}{\alpha_1} \\ 0 \\ 1 \end{array}\right)$      |
| $A_{3,r}(\alpha_1, 0, \alpha_1)$ , where $\alpha_1 \neq 0$                                                                                                                                                                                                                                                | $\begin{pmatrix} 1\\ \alpha_1\\ 0 \end{pmatrix}$                              |
| $A_{5,r}(1,1)$                                                                                                                                                                                                                                                                                            | $\begin{pmatrix} 1\\t \end{pmatrix}$ , where $t \in \mathbb{R}$               |
| $A_{5,r}(\alpha_1, \alpha_1)$ where $\alpha_1 \neq 0, 1$ .                                                                                                                                                                                                                                                | $\begin{pmatrix} 1\\ \alpha_1\\ 0 \end{pmatrix}$                              |
| $A_{7,r}\left(\frac{1}{2},0\right)$                                                                                                                                                                                                                                                                       | $ \left(\begin{array}{c} 2\\ 0\\ 2 \end{array}\right) $                       |
| $A_{8,r}\left(rac{1}{2},0 ight)$<br>$A_{10,r}\left(rac{1}{2} ight)$                                                                                                                                                                                                                                     | $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$                                       |
| A10, r(2)                                                                                                                                                                                                                                                                                                 | $\left( \begin{array}{c} 0 \end{array} \right)$                               |

 Table 6. 2-dimensional left unital real algebras.

 Table 7. 2-dimensional right unital real algebras.

| Algebra                                                                                                                                                                                       | $1_R$                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $A_{1,r}\left(\alpha_1, \frac{\alpha_1(1-2\alpha_1)}{2\beta_1}, \frac{-\alpha_1^2(1-2\alpha_1)}{2\beta_1^2} - \frac{\alpha_1}{\beta_1}, \beta_1\right) \text{ where } \alpha_1\beta_1 \neq 0$ | $\left(\begin{array}{c}2\\\frac{2\beta_1}{\alpha_1}\end{array}\right)$         |
| $A_{1,r}(0, \alpha_2, -2\alpha_2(\alpha_2 + 1), 0)$ , where $\alpha_2 \neq 0$                                                                                                                 | $\begin{pmatrix} 2\\ \frac{1}{\alpha_2} \end{pmatrix}$                         |
| $A_{1,r}\left(\frac{1}{2},-1,\alpha_4,0\right)$                                                                                                                                               | $\begin{pmatrix} 2\\ 0 \end{pmatrix}$                                          |
| $A_{2,r}(	frac12,0,eta_2)$                                                                                                                                                                    | $\begin{pmatrix} 2\\ 0 \end{pmatrix}$                                          |
| $A_{3,r}(	frac12,0,eta_2)$                                                                                                                                                                    | $\begin{pmatrix} 2\\ 0 \end{pmatrix}$                                          |
| $A_{5,r}(rac{1}{2},0)$                                                                                                                                                                       | $\begin{pmatrix} 2\\ t\\ 2\\ t\\ 2\\ \end{pmatrix}$ , where $t \in \mathbb{R}$ |
| $A_{5,r}(\frac{1}{2},\beta_2)$ , where $\beta_2 \neq 0$                                                                                                                                       | $\left(\begin{array}{c}2\\0\end{array}\right)$                                 |