Classification of two-dimensional left(right) unital algebras over algebraically closed fields and \mathbb{R}

To cite this article: H Ahmed et al 2020 J. Phys.: Conf. Ser. 1489012002

View the article online for updates and enhancements.

IOP ebooks"'

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Classification of two-dimensional left(right) unital algebras over algebraically closed fields and \mathbb{R}

H Ahmed ${ }^{1}$, U Bekbaev ${ }^{2}$, I Rakhimov ${ }^{3}$
${ }^{1}$ Department of Math., Faculty of Science, UPM, Selangor, Malaysia \& Depart. of Math., Faculty of Science, Taiz University, Taiz, Yemen
${ }^{2}$ Department of Science in Engineering, Faculty of Engineering, IIUM, Malaysia
${ }^{3}$ Department of Mathematics, Faculty of Computer and Mathematical Sciences, UiTM, Malaysia \& Institute for Mathematical Research (INSPEM), UPM, Serdang, Selangor, Malaysia
E-mail: ${ }^{1}$ houida_m7@yahoo.com; ${ }^{2}$ bekbaev@iium.edu.my; ${ }^{3}$ rakhimov@upm.edu.my.

Abstract

In this paper we describe all left, right unital and unital algebra structures on twodimensional vector space over any algebraically closed field and \mathbb{R}. We tabulate the algebras and provide their unit elements.

1. Introduction

The principal building blocks of our descriptions are derived from $[1,4]$ as the authors have presented complete lists of isomorphism classes of all two-dimensional algebras over algebraically closed fields and \mathbb{R}, providing the lists of canonical representatives of their structure constant's matrices. The latest lists of all complex unital associative algebras in dimension two, three, four, and five are available in [10], [2], [6] and [9], respectively. The lists of all complex associative algebras (both unital and non-unital) in dimension two and three are presented in [5, 11]. In this paper we describe the isomorphism classes of two-dimensional left(right) unital algebras over any algebraically closed field and \mathbb{R}. Our approach is totally different than that of $[2,5,6,9,10,11]$. We consider left(right) unital algebras over algebraically closed fields of characteristic not 2,3, characteristic 2 , characteristic 3 and over \mathbb{R} separately according to classification results of $[1,4]$. To the best knowledge of authors the descriptions of left(right) unital two-dimensional algebras over algebraically closed fields and \mathbb{R} have not been given yet. The organization of the paper is as follows. In Section 2 we give the results from [1, 4] mentioned above as tables form. The main results of the paper are in Sections 3,4 and 5. In Sections 3 and 4 we describe all possible left(right) unital and unital algebra structures on two-dimensional vector space over an arbitrary algebraically closed field, whereas Section 5 is devoted to the solution of the problem over \mathbb{R}.

2. Preliminaries

Let \mathbb{F} be any field, $A \otimes B$ stand for the Kronecker product consisting of blocks $\left(a_{i j} B\right)$, where $A=$ $\left(a_{i j}\right), B$ are matrices over \mathbb{F}. Let (\mathbb{A}, \cdot) be m-dimensional algebra over \mathbb{F} and $\mathrm{e}=\left(e^{1}, e^{2}, \ldots, e^{m}\right)$ its basis. Then the bilinear operation • is represented by a matrix $A=\left(A_{i j}^{k}\right) \in M\left(m \times m^{2} ; \mathbb{F}\right)$ as follows

$$
\mathbf{u} \cdot \mathbf{v}=\mathrm{e} A(u \otimes v)
$$

for $\mathbf{u}=\mathrm{e} u, \mathbf{v}=\mathrm{e} v$, where $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{T}, v=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{T}$ are column coordinate vectors of \mathbf{u} and \mathbf{v}, respectively. The matrix $A \in M\left(m \times m^{2} ; \mathbb{F}\right)$ defined above is called the matrix of structural constants (MSC) of \mathbb{A} with respect to the basis e. Further we assume that a basis e is fixed and we do not make a difference between the algebra \mathbb{A} and its MSC A (see [3]).

If $\mathrm{e}^{\prime}=\left(e^{\prime 1}, e^{\prime 2}, \ldots, e^{\prime m}\right)$ is another basis of $\mathbb{A}, \mathrm{e}^{\prime} g=\mathrm{e}$ with $g \in G=G L(m ; \mathbb{F})$, and A^{\prime} is MSC of \mathbb{A} with respect to e^{\prime} then it is known that

$$
\begin{equation*}
A^{\prime}=g A\left(g^{-1}\right)^{\otimes 2} \tag{1}
\end{equation*}
$$

is valid. Thus, the isomorphism of algebras \mathbb{A} and \mathbb{B} over \mathbb{F} can be given in terms of MSC as follows.
Definition 2.1 Two m-dimensional algebras \mathbb{A}, \mathbb{B} over \mathbb{F}, given by their matrices of structure constants A, B, are said to be isomorphic if $B=g A\left(g^{-1}\right)^{\otimes 2}$ holds true for some $g \in G L(m ; \mathbb{F})$.
Definition 2.2 An element $\mathbf{1}_{L}\left(\mathbf{1}_{R}\right)$ of an algebra \mathbb{A} is called a left (respectively, right) unit if $\mathbf{1}_{L} \cdot \mathbf{u}=\mathbf{u}$ (respectively, $\mathbf{u} \cdot \mathbf{1}_{R}=\mathbf{u}$) for all $\mathbf{u} \in \mathbb{A}$. An algebra with the left(right) unit element is said to be left(right) unital algebra, respectively.
Definition 2.3 An element $\mathbf{1} \in \mathbb{A}$ is said to be an unit element if $\mathbf{1} \cdot \mathbf{u}=\mathbf{u} \cdot \mathbf{1}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{A}$. In this case the algebra \mathbb{A} is said to be unital.

Further we consider only the case $m=2$ and for the simplicity we use

$$
A=\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}
\end{array}\right)
$$

for MSC, where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ stand for any elements of \mathbb{F}.
A classification of all two dimensional algebras over any field \mathbb{F}, where the second and third degree polynomial has a root, has been given in [1]. The classification there was done via providing the canonical MSCs for such algebras. In this paper we rely on the result of [1], follow its notations and for a convenience we present here the corresponding canonical representatives according to $\operatorname{Char}(\mathbb{F}) \neq 2,3, \operatorname{Char}(\mathbb{F})=2$ and $\operatorname{Char}(\mathbb{F})=3$ cases in form of Tables 1,2 and 3 below. The parameters given in the canonical representatives may take any values in \mathbb{F}.

Table 1. The list of 2-dimensional algebras in $\operatorname{Char}(\mathbb{F}) \neq 2,3$

	Algebra	Structure constants							
		α_{1}	α_{2}	α_{3}	α_{4}	β_{1}	β_{2}	β_{3}	β_{4}
	$A_{1}(\mathbf{c})$	α_{1}	α_{2}	$\alpha_{2}+1$	α_{4}	β_{1}	$-\alpha_{1}$	$-\alpha_{1}+1$	- α_{2}
	$A_{2}(\mathbf{c})$	α_{1}	0	0	1	β_{1}	β_{2}	$1-\alpha_{1}$	0
	$A_{3}(\mathbf{c})$	0	1	1	0	β_{1}	β_{2}	1	-1
	$A_{4}(\mathbf{c})$	α_{1}	0	0	0	0	β_{2}	$1-\alpha_{1}$	0
	$A_{5}(\mathbf{c})$	α_{1}	0	0	0	,	$2 \alpha_{1}-1$	$1-\alpha_{1}$	0
	$A_{6}(\mathbf{c})$	α_{1}	0	0	1	β_{1}	$1-\alpha_{1}$	- α_{1}	0
	$A_{7}(\mathbf{c})$	0	1	1	0	β_{1}	1	0	-1
	$A_{8}(\mathbf{c})$	α_{1}	0	0	0	0	$1-\alpha_{1}$	$-\alpha_{1}$	0
	A_{9}	$\frac{1}{3}$	0	0	0	1	$\overline{3}$	$-\frac{1}{3}$	0
	A_{10}	0	1	1	0	0	0	0	-1
	A_{11}	0	1	1	0	1	0	0	-1
	A_{12}	0	0	0	0	1	0	0	0

Table 2．The list of 2－dimensional algebras in $\operatorname{Char}(\mathbb{F})=2$

	Algebra	The structure constants							
		α_{1}	α_{2}	α_{3}	α_{4}	β_{1}	β_{2}	β_{3}	β_{4}
	$A_{1,2}(\mathbf{c})$	α_{1}	α_{2}	$\alpha_{2}+1$	α_{4}	β_{1}	α_{1}	$-\alpha_{1}+1$	α_{2}
	$A_{2,2}(\mathbf{c})$	α_{1}	0	，	1	β_{1}	β_{2}	$1-\alpha_{1}$	0
	$A_{3,2}(\mathbf{c})$	α_{1}	1	1	0	0	β_{2}	$1-\alpha_{1}$	1
N	$A_{4,2}(\mathbf{c})$	α_{1}	0	0	0	0	β_{2}	$1-\alpha_{1}$	0
	$A_{5,2}(\mathbf{c})$	α_{1}	0	0	0	1	1	$1-\alpha_{1}$	0
	$A_{6,2}(\mathbf{c})$	α_{1}	0	0	1	β_{1}	$1-\alpha_{1}$	α_{1}	0
	$A_{7,2}(\mathbf{c})$	α_{1}	1	1	0	0	$1-\alpha_{1}$	α_{1}	1
	$A_{8,2}(\mathbf{c})$	α_{1}	0	0	0	0	$1-\alpha_{1}$	α_{1}	0
	$A_{9,2}$	1	0	0	0	1	－	1	0
	$A_{10,2}$	0	1	1	0	0	0	0	1
	$A_{11,2}$	1	1	1	0	0	1	1	1
	$A_{12,2}$	0	0	0	0	1	0	0	0

Table 3．The list of 2－dimensional algebras in $\operatorname{Char}(\mathbb{F})=3$

$\stackrel{0}{11}$	Algebra	The structure constants							
		α_{1}	α_{2}	α_{3}	α_{4}	β_{1}	β_{2}	β_{3}	β_{4}
	$A_{1,3}(\mathbf{c})$	α_{1}	α_{2}	$\alpha_{2}+1$	α_{4}	β_{1}	$-\alpha_{1}$	$-\alpha_{1}+1$	$-\alpha_{2}$
	$A_{2,3}(\mathbf{c})$	α_{1}	0	0	1	β_{1}	β_{2}	$1-\alpha_{1}$	0
	$A_{3,3}(\mathbf{c})$	0	1	1	0	β_{1}	β_{2}	1	－1
	$A_{4,3}(\mathbf{c})$	α_{1}	0	0	0	0	β_{2}	$1-\alpha_{1}$	0
买	$A_{5,3}(\mathbf{c})$	α_{1}	0	0	0	1	$-\alpha_{1}-1$	$1-\alpha_{1}$	0
岸	$A_{6,3}(\mathbf{c})$	α_{1}	0	0	1	β_{1}	$1-\alpha_{1}$	－α_{1}	0
ご	$A_{7,3}(\mathbf{c})$	0	1	1	0	β_{1}	1	0	－1
	$A_{8,3}(\mathbf{c})$	α_{1}	0	0	0	0	$1-\alpha_{1}$	$-\alpha_{1}$	0
	$A_{9,3}$	0	1	1	0	1	0	0	－1
	$A_{10,3}$	0	1	1	0	0	0	0	－1
	$A_{11,3}$	1	0	0	0	1	－1	－1	0
	$A_{12,3}$	0	0	0	0	1	0	0	0

3．Two－dimensional left unital algebras

Let \mathbb{A} be a left unital algebra．In terms of its MSC A the algebra \mathbb{A} to be left unital is written as follows：

$$
\begin{equation*}
A(l \otimes u)=u \tag{2}
\end{equation*}
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{T}$ ，and $l=\left(t_{1}, t_{2}, \ldots, t_{m}\right)^{T}$ are column coordinate vectors of \mathbf{u} and $\mathbf{1}_{L}$ ， respectively．

It is easy to see that for a given 2－dimensional algebra \mathbb{A} with MSC $A=\left(\begin{array}{llll}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\ \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}\end{array}\right)$ the existence of a left unit element is equivalent to the equality of ranks of the matrices

$$
M=\left(\begin{array}{cc}
\alpha_{1} & \alpha_{3} \\
\beta_{1} & \beta_{3} \\
\alpha_{2} & \alpha_{4} \\
\beta_{2}-\alpha_{1} & \beta_{4}-\alpha_{3}
\end{array}\right) \text { and } M^{\prime}=\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{3} & 1 \\
\beta_{1} & \beta_{3} & 0 \\
\alpha_{2} & \alpha_{4} & 0 \\
\beta_{2}-\alpha_{1} & \beta_{4}-\alpha_{3} & 0
\end{array}\right) .
$$

This equality holds if and only if

$$
\left|\begin{array}{ll}
\beta_{1} & \beta_{3} \tag{3}\\
\alpha_{2} & \alpha_{4}
\end{array}\right|=\left|\begin{array}{cc}
\beta_{1} & \beta_{3} \\
\beta_{2}-\alpha_{1} & \beta_{4}-\alpha_{3}
\end{array}\right|=\left|\begin{array}{cc}
\alpha_{2} & \alpha_{4} \\
\beta_{2}-\alpha_{1} & \beta_{4}-\alpha_{3}
\end{array}\right|=0
$$

and at least one of the following two cases holds true:

$$
\begin{equation*}
\left(\alpha_{1}, \alpha_{3}\right) \neq 0,\left(\beta_{1}, \beta_{3}\right)=\left(\alpha_{2}, \alpha_{4}\right)=\left(\beta_{2}-\alpha_{1}, \beta_{4}-\alpha_{3}\right)=0, \tag{4}
\end{equation*}
$$

or
$\left|\begin{array}{cc}\alpha_{1} & \alpha_{3} \\ a & b\end{array}\right| \neq 0$, whenever there exists nonzero $(a, b) \in\left\{\left(\beta_{1}, \beta_{3}\right),\left(\alpha_{2}, \alpha_{4}\right),\left(\beta_{2}-\alpha_{1}, \beta_{4}-\alpha_{3}\right)\right\}$.
Note that the conditions (3), (4) and (3), (5) correspond to the existence of many and unique left units, respectively.
Theorem 3.1 Over any algebraically closed field $\mathbb{F}(\operatorname{Char}(\mathbb{F}) \neq 2)$ any nontrivial 2 -dimensional left unital algebra is isomorphic to only one of the following non-isomorphic left unital algebras presented by their MSC:

- $A_{1}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)}{\beta_{1}}-\frac{1}{2}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)^{2}}{\beta_{1}^{2}}-\frac{1-\alpha_{1}}{2 \beta_{1}}, \beta_{1}\right)$
$=\left(\begin{array}{cccc}\alpha_{1} & \frac{2 \alpha_{1}-2 \alpha_{1}^{2}-\beta_{1}}{2 \beta_{1}} & \frac{2 \alpha_{1}-2 \alpha_{1}^{2}+\beta_{1}}{2 \beta_{1}} & \frac{2 \alpha_{1}-4 \alpha_{1}^{2}+2 \alpha_{1}^{3}-\beta_{1}+\alpha_{1} \beta_{1}}{2 \beta_{1}^{2}} \\ \beta_{1} & -\alpha_{1} & 1-\alpha_{1} & \frac{-2 \alpha_{1}+2 \alpha_{1}^{2}+\beta_{1}}{2 \beta_{1}}\end{array}\right)$, where $\beta_{1} \neq 0$,
- $A_{1}\left(1, \alpha_{2}, \frac{\alpha_{2}\left(2 \alpha_{2}+1\right)}{2}, 0\right)=\left(\begin{array}{cccc}1 & \alpha_{2} & 1+\alpha_{2} & \frac{1}{2}\left(\alpha_{2}+2 \alpha_{2}^{2}\right) \\ 0 & -1 & 0 & -\alpha_{2}\end{array}\right)$,
- $A_{2}\left(\alpha_{1}, 0, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 1 \\ 0 & \alpha_{1} & -\alpha_{1}+1 & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{4}\left(\alpha_{1}, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & \alpha_{1} & -\alpha_{1}+1 & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{6}\left(\frac{1}{2}, 0\right)=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right)$,
- $A_{8}\left(\frac{1}{2}\right)=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right)$.

Proof. Let us consider $A_{1}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \alpha_{2}+1 & \alpha_{4} \\ \beta_{1} & -\alpha_{1} & -\alpha_{1}+1 & -\alpha_{2}\end{array}\right)$.
Then $M=\left(\begin{array}{cc}\alpha_{1} & \alpha_{2}+1 \\ \beta_{1} & 1-\alpha_{1} \\ \alpha_{2} & \alpha_{4} \\ -2 \alpha_{1} & -2 \alpha_{2}-1\end{array}\right)$ and the equality (3) means

$$
\beta_{1} \alpha_{4}-\alpha_{2}\left(1-\alpha_{1}\right)=-\beta_{1}\left(2 \alpha_{2}+1\right)+2 \alpha_{1}\left(1-\alpha_{1}\right)=-\alpha_{2}\left(2 \alpha_{2}+1\right)+2 \alpha_{1} \alpha_{4}=0
$$

and (4) doesn't occur. There are two possibilities:
Case 1. $\beta_{1} \neq 0$. In this case the equality (3) is equivalent to

$$
\alpha_{4}=\frac{\alpha_{2}\left(1-\alpha_{1}\right)}{\beta_{1}}, \alpha_{2}=\frac{\alpha_{1}\left(1-\alpha_{1}\right)}{\beta_{1}}-\frac{1}{2}, \text { and }\left|\begin{array}{ll}
\alpha_{1} & \alpha_{2}+1 \\
\beta_{1} & 1-\alpha_{1}
\end{array}\right|=-\frac{\beta_{1}}{2} \neq 0 .
$$

Therefore, $A_{1}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)}{\beta_{1}}-\frac{1}{2}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)^{2}}{\beta_{1}^{2}}-\frac{1-\alpha_{1}}{2 \beta_{1}}, \beta_{1}\right)$ has a left unit, where $\beta_{1} \neq 0$.
Case 2. $\beta_{1}=0$. In this case the equality (3) is equivalent to

$$
\alpha_{2}\left(1-\alpha_{1}\right)=\alpha_{1}\left(1-\alpha_{1}\right)=-\alpha_{2}\left(2 \alpha_{2}+1\right)+2 \alpha_{1} \alpha_{4}=0
$$

and (5) occurs if and only if $\alpha_{1}=1$ and therefore

$$
A_{1}\left(1, \alpha_{2}, \frac{\alpha_{2}\left(2 \alpha_{2}+1\right)}{2}, 0\right)
$$

also has a left unit.

$$
\text { Consider } A_{2}(\mathbf{c})=\left(\begin{array}{cccc}
\alpha_{1} & 0 & 0 & 1 \\
\beta_{1} & \beta_{2} & 1-\alpha_{1} & 0
\end{array}\right) . \text { Then } M=\left(\begin{array}{cc}
\alpha_{1} & 0 \\
\beta_{1} & 1-\alpha_{1} \\
0 & 1 \\
\beta_{2}-\alpha_{1} & 0
\end{array}\right)
$$

The equality (3) means

$$
\beta_{1}=\left(1-\alpha_{1}\right)\left(\beta_{2}-\alpha_{1}\right)=\beta_{2}-\alpha_{1}=0
$$

and (4) doesn't occur. Therefore, $A_{2}\left(\alpha_{1}, 0, \alpha_{1}\right)$ has a left unit, where $\alpha_{1} \neq 0$.

$$
\text { In } A_{3}(\mathbf{c})=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
\beta_{1} & \beta_{2} & 1 & -1
\end{array}\right) \text { case we have } M=\left(\begin{array}{cc}
\alpha_{1} & 1 \\
\beta_{1} & 1 \\
1 & 0 \\
\beta_{2} & -2
\end{array}\right) \text { and }\left|\begin{array}{cc}
1 & 0 \\
\beta_{2} & -2
\end{array}\right|=-2 \neq 0
$$

which shows the absence of a left unit.
Let us consider $A_{4}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & \beta_{2} & 1-\alpha_{1} & 0\end{array}\right)$. Then $M=\left(\begin{array}{cc}\alpha_{1} & 0 \\ 0 & 1-\alpha_{1} \\ 0 & 0 \\ \beta_{2}-\alpha_{1} & 0\end{array}\right)$, the equality (3) is equivalent to $\left(1-\alpha_{1}\right)\left(\alpha_{1}-\beta_{2}\right)=0$ and therefore $A_{4}(1,1)$ has left units. In this case (5) happens if and only if $\alpha_{1} \neq 0,1, \alpha_{1}=\beta_{2}$. So $A_{4}\left(\alpha_{1}, \alpha_{1}\right)$ has a left unit, where $\alpha_{1} \neq 0$.

$$
\text { In } A_{5}(\mathbf{c})=\left(\begin{array}{cccc}
\alpha_{1} & 0 & 0 & 0 \\
1 & 2 \alpha_{1}-1 & 1-\alpha_{1} & 0
\end{array}\right) \text { case one has } M=\left(\begin{array}{cc}
\alpha_{1} & 0 \\
1 & 1-\alpha_{1} \\
0 & 0 \\
\alpha_{1}-1 & 0
\end{array}\right) \text {, the }
$$

equality (3) means $\left(1-\alpha_{1}\right)\left(\alpha_{1}-1\right)=0$, so we have $\alpha_{1}=1$. But neither (4) no (5) occurs, that means that among $A_{5}\left(\alpha_{1}\right)$ there is no algebra with a left unit.

$$
\text { In } A_{6}(\mathbf{c})=\left(\begin{array}{cccc}
\alpha_{1} & 0 & 0 & 1 \\
\beta_{1} & 1-\alpha_{1} & -\alpha_{1} & 0
\end{array}\right) \text { case we have } M=\left(\begin{array}{cc}
\alpha_{1} & 0 \\
\beta_{1} & -\alpha_{1} \\
0 & 1 \\
1-2 \alpha_{1} & 0
\end{array}\right) \text {, the equality }
$$

(3) is equivalent to $\beta_{1}=\alpha_{1}\left(1-2 \alpha_{1}\right)=-1+2 \alpha_{1}=0$ and therefore $A_{6}\left(\frac{1}{2}, 0\right)$ has a left unit.

$$
\text { In } A_{7}(\mathbf{c})=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
\beta_{1} & 1 & 0 & -1
\end{array}\right) \text { case we have } M=\left(\begin{array}{cc}
0 & 1 \\
\beta_{1} & 0 \\
1 & 0 \\
1 & -2
\end{array}\right), \text { and the inequality }
$$

$\left|\begin{array}{cc}1 & 0 \\ 1 & -2\end{array}\right|=-2 \neq 0$ shows the absence of a left unit due to (3).

$$
\text { In } A_{8}(\mathbf{c})=\left(\begin{array}{cccc}
\alpha_{1} & 0 & 0 & 0 \\
0 & 1-\alpha_{1} & -\alpha_{1} & 0
\end{array}\right) \text { case } M=\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & -\alpha_{1} \\
0 & 0 \\
1-2 \alpha_{1} & 0
\end{array}\right) \text {, the equality (3) gives }
$$ $\alpha_{1}\left(1-2 \alpha_{1}\right)=0$ and therefore $A_{8}\left(\frac{1}{2}\right)$ has a left unit.

It is easy to see that for A_{9}, A_{10}, A_{11} the equality (3) does not occur, the equalities (4), (5) don't occur for A_{12} and therefore they have no left units.

Note that according to Theorem 3.1 and Theorem 3.3 from $[1,4]$ in the cases of $C h a r(\mathbb{F}) \neq 2,3$ and $\operatorname{Char}(\mathbb{F})=3$ the lists are identical. Therefore, we summarize the final result for 2 dimensional left unital algebras in Table 4 (see Appendix), where all left units as well are given.

We present the corresponding results in characteristic of \mathbb{F} is 2 case without proof as follows.
Theorem 3.2 Over any algebraically closed field \mathbb{F} of characteristic 2 any nontrivial 2dimensional left unital algebra is isomorphic to only one of the following non-isomorphic left unital algebras presented by their MSC:

- $A_{1,2}\left(\alpha_{1}, 0, \alpha_{4}, 0\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 1 & \alpha_{4} \\ 0 & \alpha_{1} & 1-\alpha_{1} & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{2,2}\left(\alpha_{1}, 0, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 1 \\ 0 & \alpha_{1} & 1-\alpha_{1} & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{3,2}\left(1, \beta_{2}\right)=\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & \beta_{2} & 0 & 1\end{array}\right)$,
- $A_{4,2}\left(\alpha_{1}, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & \alpha_{1} & 1-\alpha_{1} & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{7,2}(0)=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$,
- $A_{10,2}=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

4. Two-dimensional right unital algebras

Now let us consider the existence of a right unit for an algebra \mathbb{A} given by its MSC $A=$ $\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\ \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}\end{array}\right)$. It is easy to see that \mathbb{A} has a right unit element if and only if the following matrices

$$
\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2} \\
\alpha_{3} & \alpha_{4} \\
\beta_{3}-\alpha_{1} & \beta_{4}-\alpha_{2}
\end{array}\right),\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & 1 \\
\beta_{1} & \beta_{2} & 0 \\
\alpha_{3} & \alpha_{4} & 0 \\
\beta_{3}-\alpha_{1} & \beta_{4}-\alpha_{2} & 0
\end{array}\right)
$$

have equal ranks. It happens if and only if

$$
\left|\begin{array}{cc}
\beta_{1} & \beta_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right|=\left|\begin{array}{cc}
\beta_{1} & \beta_{2} \\
\beta_{3}-\alpha_{1} & \beta_{4}-\alpha_{2}
\end{array}\right|=\left|\begin{array}{cc}
\alpha_{3} & \alpha_{4} \\
\beta_{3}-\alpha_{1} & \beta_{4}-\alpha_{2}
\end{array}\right|=0
$$

and at least one of the following two cases holds true

$$
\left(\alpha_{1}, \alpha_{2}\right) \neq 0,\left(\beta_{1}, \beta_{2}\right)=\left(\alpha_{3}, \alpha_{4}\right)=\left(\beta_{3}-\alpha_{1}, \beta_{4}-\alpha_{2}\right)=0
$$

or

$$
\left|\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
a & b
\end{array}\right| \neq 0, \quad \text { if there exists nonzero }(a, b) \in\left\{\left(\beta_{1}, \beta_{2}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\beta_{3}-\alpha_{1}, \beta_{4}-\alpha_{2}\right)\right\}
$$

Because of similarity of proofs in right unital cases to those of left unital ones we present the result without proof by the following theorems.

Theorem 4.1 Over any algebraically closed field \mathbb{F} of characteristic not 2 any nontrivial 2dimensional right unital algebra is isomorphic to only one of the following non-isomorphic right unital algebras presented by their MSC:

- $A_{1}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}},-\frac{\alpha_{1}^{2}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}^{2}}-\frac{\alpha_{1}}{\beta_{1}}, \beta_{1}\right)$, where $\alpha_{1} \beta_{1} \neq 0$,
- $A_{1}\left(0, \alpha_{2},-2 \alpha_{2}\left(\alpha_{2}+1\right), 0\right)$, where $\alpha_{2}\left(1+\alpha_{2}\right) \neq 0$,
- $A_{1}\left(\frac{1}{2},-1, \alpha_{4}, 0\right)$,
- $A_{2}\left(\frac{1}{2}, 0, \beta_{2}\right)$,
- $A_{4}\left(\frac{1}{2}, \beta_{2}\right)$.

Theorem 4.2 Over any algebraically closed field \mathbb{F} of characteristic 2 any nontrivial 2dimensional right unital algebra is isomorphic to only one of the following non-isomorphic right unital algebras presented by their MSC:

- $A_{1,2}\left(0, \alpha_{2}, 0, \beta_{1}\right)$, where $\alpha_{2} \neq 0$,
- $A_{3,2}\left(\alpha_{1}, 0\right)$,
- $A_{6,2}\left(\alpha_{1}, 0\right)$, where $\alpha_{1} \neq 0$,
- $A_{7,2}(1)$,
- $A_{8,2}\left(\alpha_{1}\right)$, where $\alpha_{1} \neq 0$,
- $A_{10,2}$.

The results obtained are summarized in Table 5 (see Appendix), where all right units as well are listed.

Corollary 4.3 Over an algebraically closed field $\mathbb{F},(\operatorname{Char}(\mathbb{F}) \neq 2)$, there exist, up to isomorphism, only two non-trivial 2-dimensional unital algebras given by their matrices of structure constants as follows

$$
A_{2}\left(\frac{1}{2}, 0, \frac{1}{2}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right), \quad A_{4}\left(\frac{1}{2}, \frac{1}{2}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

Corollary 4.4 Over an algebraically closed field $\mathbb{F},(\operatorname{Char}(\mathbb{F})=2)$, there exists, up to isomorphism, only two non-trivial 2-dimensional unital algebras given by their matrices of structure constants as

$$
A_{3,2}(1,0)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad A_{10,2}=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

5. Two-dimensional left and right unital real algebras

Due to [4] we have the following classification theorem.
Theorem 5.1 Any non-trivial 2-dimensional real algebra is isomorphic to only one of the following listed, by their matrices of structure constants, algebras:

- $A_{1, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & \alpha_{2} & \alpha_{2}+1 & \alpha_{4} \\ \beta_{1} & -\alpha_{1} & -\alpha_{1}+1 & -\alpha_{2}\end{array}\right)$, where $\mathbf{c}=\left(\alpha_{1}, \alpha_{2}, \alpha_{4}, \beta_{1}\right) \in \mathbb{R}^{4}$,
- $A_{2, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 1 \\ \beta_{1} & \beta_{2} & 1-\alpha_{1} & 0\end{array}\right)$, where $\beta_{1} \geq 0, \mathbf{c}=\left(\alpha_{1}, \beta_{1}, \beta_{2}\right) \in \mathbb{R}^{3}$,
- $A_{3, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & -1 \\ \beta_{1} & \beta_{2} & 1-\alpha_{1} & 0\end{array}\right)$, where $\beta_{1} \geq 0, \mathbf{c}=\left(\alpha_{1}, \beta_{1}, \beta_{2}\right) \in \mathbb{R}^{3}$,
- $A_{4, r}(\mathbf{c})=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ \beta_{1} & \beta_{2} & 1 & -1\end{array}\right)$, where $\mathbf{c}=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}$,
- $A_{5, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & \beta_{2} & 1-\alpha_{1} & 0\end{array}\right)$, where $\mathbf{c}=\left(\alpha_{1}, \beta_{2}\right) \in \mathbb{R}^{2}$,
- $A_{6, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 1 & 2 \alpha_{1}-1 & 1-\alpha_{1} & 0\end{array}\right)$, where $\mathbf{c}=\alpha_{1} \in \mathbb{R}$,
- $A_{7, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 1 \\ \beta_{1} & 1-\alpha_{1} & -\alpha_{1} & 0\end{array}\right)$, where $\beta_{1} \geq 0, \mathbf{c}=\left(\alpha_{1}, \beta_{1}\right) \in \mathbb{R}^{2}$,
- $A_{8, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & -1 \\ \beta_{1} & 1-\alpha_{1} & -\alpha_{1} & 0\end{array}\right)$, where $\beta_{1} \geq 0, \mathbf{c}=\left(\alpha_{1}, \beta_{1}\right) \in \mathbb{R}^{2}$,
- $A_{9, r}(\mathbf{c})=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ \beta_{1} & 1 & 0 & -1\end{array}\right)$, where $\mathbf{c}=\beta_{1} \in \mathbb{R}$,
- $A_{10, r}(\mathbf{c})=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & 1-\alpha_{1} & -\alpha_{1} & 0\end{array}\right)$, where $\mathbf{c}=\alpha_{1} \in \mathbb{R}$,
- $A_{11, r}=\left(\begin{array}{cccc}\frac{1}{3} & 0 & 0 & 0 \\ 1 & \frac{2}{3} & -\frac{1}{3} & 0\end{array}\right)$,
- $A_{12, r}=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1\end{array}\right)$,
- $A_{13, r}=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1\end{array}\right)$,
- $A_{14, r}=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$,
- $A_{15, r}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.

Owing to Theorem 5.1 the following results can be proved.
Theorem 5.2 Over the real field \mathbb{R} up to isomorphism there exist only the following nontrivial non-isomorphic two dimensional left unital algebras

- $A_{1, r}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)}{\beta_{1}}-\frac{1}{2}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)^{2}}{\beta_{1}^{2}}-\frac{1-\alpha_{1}}{2 \beta_{1}}, \beta_{1}\right)$

$$
=\left(\begin{array}{cccc}
\alpha_{1} & \frac{2 \alpha_{1}-2 \alpha_{1}^{2}-\beta_{1}}{2 \beta_{1}} & \frac{2 \alpha_{1}-2 \alpha_{1}^{2}+\beta_{1}}{2 \beta_{1}} & \frac{2 \alpha_{1}-4 \alpha_{1}^{2}+2 \alpha_{1}^{3}-\beta_{1}+\alpha_{1} \beta_{1}}{2 \beta_{1}^{2}} \\
\beta_{1} & -\alpha_{1} & 1-\alpha_{1} & \frac{-2 \alpha_{1}+2 \alpha_{1}^{2}+\beta_{1}}{2 \beta_{1}}
\end{array}\right) \text {, where } \beta_{1} \neq 0,
$$

- $A_{1, r}\left(1, \alpha_{2}, \frac{\alpha_{2}\left(2 \alpha_{2}+1\right)}{2}, 0\right)=\left(\begin{array}{cccc}1 & \alpha_{2} & 1+\alpha_{2} & \frac{1}{2}\left(\alpha_{2}+2 \alpha_{2}^{2}\right) \\ 0 & -1 & 0 & -\alpha_{2}\end{array}\right)$,
- $A_{2, r}\left(\alpha_{1}, 0, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 1 \\ 0 & \alpha_{1} & -\alpha_{1}+1 & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{3, r}\left(\alpha_{1}, 0, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & -1 \\ 0 & \alpha_{1} & -\alpha_{1}+1 & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{5, r}\left(\alpha_{1}, \alpha_{1}\right)=\left(\begin{array}{cccc}\alpha_{1} & 0 & 0 & 0 \\ 0 & \alpha_{1} & -\alpha_{1}+1 & 0\end{array}\right)$, where $\alpha_{1} \neq 0$,
- $A_{7, r}\left(\frac{1}{2}, 0\right)=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right)$,
- $A_{8, r}\left(\frac{1}{2}, 0\right)=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & -1 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right)$,
- $A_{10, r}\left(\frac{1}{2}\right)=\left(\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right)$.

Theorem 5.3 Over the real field \mathbb{R} up to isomorphism there exist only the following nontrivial non-isomorphic two dimensional right unital algebras:

- $A_{1, r}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}},-\frac{\alpha_{1}^{2}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}^{2}}-\frac{\alpha_{1}}{\beta_{1}}, \beta_{1}\right)$, where $\alpha_{1} \beta_{1} \neq 0$,
- $A_{1, r}\left(0, \alpha_{2},-2 \alpha_{2}\left(\alpha_{2}+1\right), 0\right)$, where $\alpha_{2} \neq 0$,
- $A_{1, r}\left(\frac{1}{2},-1, \alpha_{4}, 0\right)$,
- $A_{2, r}\left(\frac{1}{2}, 0, \beta_{2}\right)$,
- $A_{3, r}\left(\frac{1}{2}, 0, \beta_{2}\right)$,
- $A_{5, r}\left(\frac{1}{2}, \beta_{2}\right)$.

The results are represented in Tables 6 and 7 (see Appendix), where the units also are provided.
Corollary 5.4 Up to isomorphism there are only the following nontrivial 2-dimensional real unital algebras.

$$
\begin{gathered}
A_{2, r}\left(\frac{1}{2}, 0, \frac{1}{2}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right), A_{3, r}\left(\frac{1}{2}, 0, \frac{1}{2}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & -1 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right), \\
A_{5, r}\left(\frac{1}{2}, \frac{1}{2}\right)=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
\end{gathered}
$$

Among these algebras only $A_{3, r}\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ is a division algebra and it is isomorphic to the algebra of complex numbers.

Acknowledgments

The first author thanks Universiti Putra Malaysia for support via grant IPS 9537100/UPM and the second author's research was supported by FRGS14-153-0394, MOHE.

References

[1] Ahmed H, Bekbaev U and Rakhimov I 2017 Complete classification of two-dimensional algebras, AIP Conference Proceedings 1830, 070016, doi: 10.1063/1.4980965.
[2] Arezina P, Caldwell S, Davis J and Frederick B 1996 Three-dimensional Associative Unital algebras, Journal of PGSS, www.pgss.mcs.cmu.edu/home/Publications.html, 15, 227-237.
[3] Bekbaev U 2015 On classification of finite dimensional algebras arXiv:1504.01194.
[4] Bekbaev U 2017 Complete classification of two-dimensional general, commutative, commutative Jordan, division and evolution algebras arXiv: 1705.01237.
[5] Fialowski A, Penkava M and Phillipson M 2011 Deformations of Complex 3-dimensional associative algebras, Journal of Generalized Lie Theory and Applications, 5, 1-22.
[6] Gabriel R 1974 Finite representation type is open Lecture Notes in Math., 488, 132-155.
[7] Goze M and Remm E 2011 2-dimensional algebras, African Journal of Mathematical Physics, 10, 81-91.
[8] Kaygorodov I and Volkov Y 2019 The variety of 2-dimensional algebras over an algebraically closed field, Canadian Journal of Mathematics, 71(4), 819-842.
[9] Mazolla G 1979 The algebraic and geometric classification associative algebras of dimension five, Manuscripta Math., 27, 1-21.
[10] Peirce B 1881 Linear associative algebra Amer. J. Math., 4, 97-221.
[11] Rakhimov I, Rikhsiboev I and Basri W 2009 Complete lists of low dimensional complex associative algebras, arXiv:0910.0932v2 [math.RA].

6. Appendix

Table 4. 2-dimensional left unital algebras

Table 5. 2-dimensional right unital algebras.

	Algebra	$\mathbf{1}_{R}$
$\begin{aligned} & \text { N } \\ & \text { H } \\ & \text { 国 } \\ & \vdots \\ & \text { © } \end{aligned}$	$A_{1}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}}, \frac{-\alpha_{1}^{2}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}^{2}}-\frac{\alpha_{1}}{\beta_{1}}, \beta_{1}\right)$, where $\alpha_{1} \beta_{1} \neq 0$	$\binom{2}{\frac{2 \beta_{1}}{\alpha_{1}}}$
	$A_{1}\left(0, \alpha_{2},-2 \alpha_{2}\left(\alpha_{2}+1\right), 0\right)$, where $\alpha_{2} \neq 0$	$\binom{2}{\frac{1}{\alpha_{2}}}$
	$A_{1}\left(\frac{1}{2},-1, \alpha_{4}, 0\right)$	$\binom{2}{0}$
	$A_{2}\left(\frac{1}{2}, 0, \beta_{2}\right)$	$\binom{2}{0}$
	$A_{4}\left(\frac{1}{2}, 0\right)$	$\binom{2}{t}$, where $t \in \mathbb{F}$
	$A_{4}\left(\frac{1}{2}, \beta_{2}\right)$, where $\beta_{2} \neq 0$	$\binom{2}{0}$
	$A_{1,2}\left(0, \alpha_{2}, 0, \beta_{1}\right)$, where $\alpha_{2} \neq 0$	$\binom{0}{\frac{1}{\alpha_{2}}}$
	$A_{3,2}\left(\alpha_{1}, 0\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
	$A_{6,2}\left(\alpha_{1}, 0\right)$, where $\alpha_{1} \neq 0$	$\binom{\frac{1}{\alpha_{1}}}{0}$
	$A_{7,2}(1)$	$\left(\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right)$
	$A_{8,2}(1)$	$\binom{1}{t}$, where $t \in \mathbb{F}$
	$A_{8,2}\left(\alpha_{1}\right)$, where $\alpha_{1} \neq 0,1$	$\binom{1}{0}$
	$A_{10,2}$	$\binom{0}{1}$

Table 6. 2-dimensional left unital real algebras.
$\left.\begin{array}{ll}\hline \text { Algebra } & \mathbf{1}_{L} \\ \hline A_{1, r}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)}{\beta_{1}}-\frac{1}{2}, \frac{\alpha_{1}\left(1-\alpha_{1}\right)^{2}}{\beta_{1}^{2}}-\frac{1-\alpha_{1}}{2 \beta_{1}}, \beta_{1}\right), \text { where } \beta_{1} \neq 0 & \left(\begin{array}{c}\frac{-2\left(1-\alpha_{1}\right)}{\beta_{1}} \\ 2 \\ 2\end{array}\right) \\ A_{1, r}\left(1, \alpha_{2}, \frac{\alpha_{2}\left(2 \alpha_{2}+1\right)}{2}, 0\right) & \binom{-2 \alpha_{2}-1}{2} \\ A_{2, r}\left(\alpha_{1}, 0, \alpha_{1}\right), \text { where } \alpha_{1} \neq 0 & \left(\begin{array}{c}1 \\ \alpha_{1} \\ 0\end{array}\right) \\ A_{3, r}\left(\alpha_{1}, 0, \alpha_{1}\right), \text { where } \alpha_{1} \neq 0 & \binom{\frac{1}{\alpha_{1}}}{0} \\ A_{5, r}(1,1) & \binom{1}{t}, \text { where } t \in \mathbb{R} \\ \frac{1}{\alpha_{1}} \\ 0\end{array}\right),\left(\begin{array}{c}2 \\ 0 \\ 2 \\ A_{5, r}\left(\alpha_{1}, \alpha_{1}\right) \text { where } \alpha_{1} \neq 0,1 . \\ 0 \\ A_{7, r}\left(\frac{1}{2}, 0\right) \\ A_{8, r}\left(\frac{1}{2}, 0\right) \\ A_{10, r}\left(\frac{1}{2}\right) \\ \hline\end{array}\right)$

Table 7. 2-dimensional right unital real algebras.

Algebra	$\mathbf{1}_{R}$
$A_{1, r}\left(\alpha_{1}, \frac{\alpha_{1}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}}, \frac{-\alpha_{1}^{2}\left(1-2 \alpha_{1}\right)}{2 \beta_{1}^{2}}-\frac{\alpha_{1}}{\beta_{1}}, \beta_{1}\right)$ where $\alpha_{1} \beta_{1} \neq 0$	$\binom{2}{\frac{2 \beta_{1}}{\alpha_{1}}}$
$A_{1, r}\left(0, \alpha_{2},-2 \alpha_{2}\left(\alpha_{2}+1\right), 0\right)$, where $\alpha_{2} \neq 0$	$\binom{2}{\frac{1}{\alpha_{2}}}$
$A_{1, r}\left(\frac{1}{2},-1, \alpha_{4}, 0\right)$	$\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$
$A_{2, r}\left(\frac{1}{2}, 0, \beta_{2}\right)$	$\left(\begin{array}{l}2 \\ 0 \\ 2 \\ 0 \\ A_{3, r}\left(\frac{1}{2}, 0, \beta_{2}\right) \\ 2 \\ A_{5, r}\left(\frac{1}{2}, 0\right) \\ t\end{array}\right)$, where $t \in \mathbb{R}$
$A_{5, r}\left(\frac{1}{2}, \beta_{2}\right)$, where $\beta_{2} \neq 0$	$\binom{2}{0}$

